A252898 Decimal expansion of lim_{n->infinity} -FractionalPart[Zeta'(1+1/n)] or -FractionalPart[Zeta'(1-1/n)], where Zeta' is the first derivative of the Riemann zeta function.
9, 2, 7, 1, 8, 4, 1, 5, 4, 5, 1, 6, 3, 2, 3, 2, 7, 5, 1, 3, 9, 4, 1, 3, 6, 2, 4, 1, 2, 5, 0, 9, 8, 6, 8, 0, 8, 6, 2, 2, 6, 3, 6, 6, 1, 6, 6, 5, 6, 6, 2, 0, 4, 7, 4, 0, 0, 9, 9, 3, 4, 4, 0, 2, 5, 8, 5, 9, 8, 5, 6, 6, 4, 2, 8, 4, 8, 8, 5, 1, 5, 1, 2, 1, 9, 1, 3, 0, 7, 1, 7, 5, 5, 1, 5, 5, 9, 8, 5, 3, 9, 5, 9, 2, 2, 7, 9
Offset: 0
Examples
0.9271841545163232751394136...
Programs
-
Maple
s:= convert(evalf(1+gamma(1), 140), string): seq(parse(s[n+2]), n=0..110); # Alois P. Heinz, Dec 30 2014
-
Mathematica
FractionalPart[N[Derivative[1][Zeta][ 1 + 1/(1000000000000000000000000000000000000000000000000000000000000)], 400]]
Formula
Limit_{n -> infinity} -FractionalPart[Zeta'(1+1/n)]
Limit_{n -> infinity} -FractionalPart[Zeta'(1-1/n)]
Equals 1 - A082633. - Alois P. Heinz, Dec 30 2014
Extensions
More digits from Alois P. Heinz, Dec 30 2014
Comments