cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A252976 T(n,k) = Number of n X k nonnegative integer arrays with upper left 0 and lower right n+k-5 and value increasing by 0 or 1 with every step right or down.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 4, 13, 18, 13, 4, 10, 61, 153, 153, 61, 10, 20, 192, 770, 1236, 770, 192, 20, 35, 483, 2859, 6997, 6997, 2859, 483, 35, 56, 1050, 8694, 30802, 46812, 30802, 8694, 1050, 56, 84, 2058, 22924, 112877, 248182, 248182, 112877, 22924, 2058
Offset: 1

Views

Author

R. H. Hardin, Dec 25 2014

Keywords

Comments

Table starts
..0....0......0.......1........4........10.........20..........35...........56
..0....0......1......13.......61.......192........483........1050.........2058
..0....1.....18.....153......770......2859.......8694.......22924........54272
..1...13....153....1236.....6997.....30802.....112877......359550......1024773
..4...61....770....6997....46812....248182....1100210.....4230324.....14477724
.10..192...2859...30802...248182...1592348....8528422....39423196....161160206
.20..483...8694..112877..1100210...8528422...54926890...303382053...1471499970
.35.1050..22924..359550..4230324..39423196..303382053..1988261908..11360377192
.56.2058..54272.1024773.14477724.161160206.1471499970.11360377192..75922639116
.84.3732.118057.2667554.44951694.593478797.6383377435.57644900961.447545856560

Examples

			Some solutions for n=4, k=4:
..0..0..0..0....0..0..0..1....0..0..1..1....0..1..1..1....0..1..2..3
..0..0..0..1....0..1..1..1....1..1..1..2....0..1..1..1....0..1..2..3
..0..1..1..2....1..2..2..2....1..2..2..3....1..1..2..2....0..1..2..3
..1..1..2..3....1..2..2..3....1..2..3..3....1..2..2..3....1..1..2..3
		

Crossrefs

Cf. A252876, A252930. Column 1 is A000292(n-3). Cf. A252970-A252975 (columns 2-7).

Formula

Empirical for column k:
k=1: a(n) = (1/6)*n^3 - 1*n^2 + (11/6)*n - 1
k=2: [polynomial of degree 6]
k=3: [polynomial of degree 9]
k=4: [polynomial of degree 12]
k=5: [polynomial of degree 15]
k=6: [polynomial of degree 18]
k=7: [polynomial of degree 21]
Empirical: with "n+k-3" instead of "n+k-5" T(n,k) = binomial(n+k,k) - 2, see A166810, A166812, A166813.