A252976 T(n,k) = Number of n X k nonnegative integer arrays with upper left 0 and lower right n+k-5 and value increasing by 0 or 1 with every step right or down.
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 4, 13, 18, 13, 4, 10, 61, 153, 153, 61, 10, 20, 192, 770, 1236, 770, 192, 20, 35, 483, 2859, 6997, 6997, 2859, 483, 35, 56, 1050, 8694, 30802, 46812, 30802, 8694, 1050, 56, 84, 2058, 22924, 112877, 248182, 248182, 112877, 22924, 2058
Offset: 1
Examples
Some solutions for n=4, k=4: ..0..0..0..0....0..0..0..1....0..0..1..1....0..1..1..1....0..1..2..3 ..0..0..0..1....0..1..1..1....1..1..1..2....0..1..1..1....0..1..2..3 ..0..1..1..2....1..2..2..2....1..2..2..3....1..1..2..2....0..1..2..3 ..1..1..2..3....1..2..2..3....1..2..3..3....1..2..2..3....1..1..2..3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..449
- R. J. Mathar, Counting 2-way monotonic terrace forms over rectangular landscapes, vixra 1511.0225 (2015), subtable T_{n X m}(n+m-5).
Formula
Empirical for column k:
k=1: a(n) = (1/6)*n^3 - 1*n^2 + (11/6)*n - 1
k=2: [polynomial of degree 6]
k=3: [polynomial of degree 9]
k=4: [polynomial of degree 12]
k=5: [polynomial of degree 15]
k=6: [polynomial of degree 18]
k=7: [polynomial of degree 21]
Comments