cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A252876 T(n,k) = Number of n X k nonnegative integer arrays with upper left 0 and lower right n+k-4 and value increasing by 0 or 1 with every step right or down.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 3, 8, 8, 3, 6, 26, 44, 26, 6, 10, 61, 153, 153, 61, 10, 15, 120, 413, 615, 413, 120, 15, 21, 211, 949, 1953, 1953, 949, 211, 21, 28, 343, 1948, 5281, 7313, 5281, 1948, 343, 28, 36, 526, 3676, 12686, 23203, 23203, 12686, 3676, 526, 36, 45, 771, 6497, 27805, 64920, 85801, 64920, 27805, 6497, 771, 45
Offset: 1

Views

Author

R. H. Hardin, Dec 24 2014

Keywords

Comments

Table starts
..0...0.....1......3......6......10.......15........21........28.........36
..0...1.....8.....26.....61.....120......211.......343.......526........771
..1...8....44....153....413.....949.....1948......3676......6497......10894
..3..26...153....615...1953....5281....12686.....27805.....56624.....108549
..6..61...413...1953...7313...23203....64920....164399....383735.....836797
.10.120...949...5281..23203...85801...277585....806347...2142634....5281314
.15.211..1948..12686..64920..277585..1030330...3407823..10237249...28340232
.21.343..3676..27805.164399..806347..3407823..12742873..42993671..132872804
.28.526..6497..56624.383735.2142634.10237249..42993671.161937617..555632319
.36.771.10894.108549.836797.5281314.28340232.132872804.555632319.2105918045

Examples

			Some solutions for n=3 k=4
..0..1..1..1....0..0..1..1....0..1..2..3....0..0..1..1....0..0..1..1
..1..1..2..2....0..1..1..2....1..1..2..3....0..0..1..2....0..1..2..2
..1..1..2..3....1..2..2..3....1..2..2..3....1..1..2..3....1..1..2..3
		

Crossrefs

Columns 1-7 give: A000217(n-2), A252870, A252871, A252872, A252873, A252874, A252875.
Main diagonal is A252869.

Formula

Empirical for column k:
k=1: a(n) = (1/2)*n^2 - (3/2)*n + 1
k=2: a(n) = (1/24)*n^4 + (5/12)*n^3 - (13/24)*n^2 - (11/12)*n + 1,
k=3: [polynomial of degree 6]
k=4: [polynomial of degree 8]
k=5: [polynomial of degree 10]
k=6: [polynomial of degree 12]
k=7: [polynomial of degree 14]
Empirical: with "n+k-3" instead of "n+k-4" T(n,k) = binomial(n+k,k) - 2.

A252930 T(n,k) = Number of n X k nonnegative integer arrays with upper left 0 and lower right n+k-6 and value increasing by 0 or 1 with every step right or down.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 5, 19, 33, 33, 19, 5, 15, 120, 413, 615, 413, 120, 15, 35, 483, 2859, 6997, 6997, 2859, 483, 35, 70, 1500, 13976, 53950, 84910, 53950, 13976, 1500, 70, 126, 3923, 54199, 315198, 762227, 762227, 315198, 54199, 3923, 126, 210
Offset: 1

Views

Author

R. H. Hardin, Dec 24 2014

Keywords

Comments

Table starts
...0....0......0........0.........1...........5...........15............35
...0....0......0........1........19.........120..........483..........1500
...0....0......1.......33.......413........2859........13976.........54199
...0....1.....33......615......6997.......53950.......315198.......1499394
...1...19....413.....6997.....84910......762227......5385305......31454256
...5..120...2859....53950....762227.....8241540.....71297441.....512868867
..15..483..13976...315198...5385305....71297441....759337545....6725497344
..35.1500..54199..1499394..31454256...512868867...6725497344...73117894428
..70.3923.177848..6083808.157376166..3160111147..50869309436..675539536773
.126.9069.513905.21733215.692347393.17063990547.335549742230.5411459549576

Examples

			Some solutions for n=4, k=4:
..0..1..1..1....0..0..0..0....0..0..0..0....0..1..1..2....0..0..0..1
..1..1..1..1....1..1..1..1....0..0..0..1....1..1..2..2....0..1..1..2
..1..1..2..2....1..1..1..1....1..1..1..1....1..1..2..2....0..1..1..2
..1..2..2..2....1..1..1..2....1..2..2..2....1..2..2..2....1..2..2..2
		

Crossrefs

Column 1 is A000332(n-1), other columns are A252924 - A252929. Cf. A252923 (diagonal); A252876 (lower right n+k-4), A252976 (lower right n+k-5).

Formula

Empirical for column k:
k=1: a(n) = (1/24)*n^4 - (5/12)*n^3 + (35/24)*n^2 - (25/12)*n + 1.
k=2: [polynomial of degree 8]
k=3: [polynomial of degree 12]
k=4: [polynomial of degree 16]
k=5: [polynomial of degree 20]
k=6: [polynomial of degree 24]
k=7: [polynomial of degree 28]
Empirical: with "n+k-3" instead of "n+k-6" T(n,k) = binomial(n+k,k) - 2.

A252970 Number of nX2 nonnegative integer arrays with upper left 0 and lower right n+2-5 and value increasing by 0 or 1 with every step right or down.

Original entry on oeis.org

0, 0, 1, 13, 61, 192, 483, 1050, 2058, 3732, 6369, 10351, 16159, 24388, 35763, 51156, 71604, 98328, 132753, 176529, 231553, 299992, 384307, 487278, 612030, 762060, 941265, 1153971, 1404963, 1699516, 2043427, 2443048, 2905320, 3437808, 4048737
Offset: 1

Views

Author

R. H. Hardin, Dec 25 2014

Keywords

Comments

Column 2 of A252976

Examples

			Some solutions for n=4
..0..0....0..0....0..0....0..0....0..0....0..0....0..1....0..0....0..1....0..1
..0..1....0..0....0..0....1..1....0..0....0..1....0..1....0..0....1..1....0..1
..0..1....0..0....0..0....1..1....1..1....0..1....0..1....0..1....1..1....0..1
..1..1....0..1....1..1....1..1....1..1....0..1....0..1....0..1....1..1....1..1
		

Formula

Empirical: a(n) = (1/720)*n^6 + (7/240)*n^5 - (1/144)*n^4 - (31/48)*n^3 + (271/180)*n^2 - (53/60)*n = n*(n-1)*(n-2)*(n^3+24*n^2+65*n-318)/720.
Empirical: G.f.: -x^3*(1+6*x-9*x^2+3*x^3) / (x-1)^7 . - R. J. Mathar, Nov 23 2015

A252975 Number of nX7 nonnegative integer arrays with upper left 0 and lower right n+7-5 and value increasing by 0 or 1 with every step right or down.

Original entry on oeis.org

20, 483, 8694, 112877, 1100210, 8528422, 54926890, 303382053, 1471499970, 6383377435, 25130419118, 90859574359, 304675148476, 955390407363, 2821209579406, 7892066379909, 21022079637900, 53557533613173
Offset: 1

Views

Author

R. H. Hardin, Dec 25 2014

Keywords

Comments

Column 7 of A252976

Examples

			Some solutions for n=4
..0..1..2..3..3..3..4....0..1..1..2..2..3..4....0..0..1..2..3..3..3
..1..2..2..3..3..3..4....1..1..2..3..3..4..5....1..1..1..2..3..4..4
..2..2..2..3..3..4..5....2..2..3..3..4..5..6....1..1..2..2..3..4..5
..2..3..3..4..4..5..6....2..3..4..4..5..6..6....1..1..2..3..4..5..6
		

Formula

Empirical: a(n) = (491/510909421717094400)*n^21 + (491/4054836680294400)*n^20 + (31237/4561691265331200)*n^19 + (16931/72754246656000)*n^18 + (6860417/1280474741145600)*n^17 + (5620079/62768369664000)*n^16 + (28238557/24715045555200)*n^15 + (460147/39626496000)*n^14 + (1994012479/20542375526400)*n^13 + (9803403773/14485008384000)*n^12 + (2842330237/724250419200)*n^11 + (22704330871/1207084032000)*n^10 + (117780405261823/1581762915532800)*n^9 + (1372309011587/5706215424000)*n^8 + (17399771450683/28245766348800)*n^7 + (29498769372031/23538138624000)*n^6 + (57797311549729/26676557107200)*n^5 + (6071375333369/2020951296000)*n^4 + (7008309815167/1119943843200)*n^3 + (375662307017/83805321600)*n^2 + (152121493/25865840)*n - 4

A252971 Number of nX3 nonnegative integer arrays with upper left 0 and lower right n+3-5 and value increasing by 0 or 1 with every step right or down.

Original entry on oeis.org

0, 1, 18, 153, 770, 2859, 8694, 22924, 54272, 118057, 239798, 460207, 841930, 1478451, 2505634, 4116442, 6579440, 10261761, 15657290, 23420901, 34409666, 49732043, 70806142, 99428264, 137853008, 188886345, 255993166, 343420923
Offset: 1

Views

Author

R. H. Hardin, Dec 25 2014

Keywords

Comments

Column 3 of A252976.

Examples

			Some solutions for n=4
..0..1..1....0..0..1....0..1..1....0..1..1....0..0..1....0..0..0....0..0..1
..0..1..2....0..0..1....1..1..2....0..1..2....0..1..2....0..1..1....0..0..1
..1..1..2....0..1..2....1..1..2....1..2..2....1..1..2....1..1..1....1..1..1
..2..2..2....1..2..2....1..1..2....1..2..2....1..2..2....1..1..2....2..2..2
		

Formula

Empirical: a(n) = (1/90720)*n^9 + (1/2520)*n^8 + (19/3780)*n^7 + (7/360)*n^6 - (59/4320)*n^5 - (19/180)*n^4 + (5827/45360)*n^3 - (32/35)*n^2 + (3629/1260)*n - 2.
Empirical: G.f.: x^2*(1+8*x+18*x^2-70*x^3+94*x^4-78*x^5+43*x^6-14*x^7+2*x^8) / (x-1)^10. - R. J. Mathar, Nov 23 2015

A252972 Number of nX4 nonnegative integer arrays with upper left 0 and lower right n+4-5 and value increasing by 0 or 1 with every step right or down.

Original entry on oeis.org

1, 13, 153, 1236, 6997, 30802, 112877, 359550, 1024773, 2667554, 6438457, 14575914, 31230978, 63789948, 124931040, 235737421, 430298389, 762367687, 1314817821, 2212837300, 3642069999, 5873199042, 9294839027, 14457028052, 22128113529
Offset: 1

Views

Author

R. H. Hardin, Dec 25 2014

Keywords

Comments

Column 4 of A252976

Examples

			Some solutions for n=4
..0..1..1..1....0..1..2..3....0..0..0..1....0..1..2..2....0..0..1..2
..0..1..1..1....0..1..2..3....1..1..1..2....0..1..2..2....0..1..2..2
..0..1..2..2....1..2..2..3....2..2..2..2....1..1..2..3....1..2..2..2
..0..1..2..3....1..2..3..3....2..2..3..3....1..2..2..3....2..3..3..3
		

Formula

Empirical: a(n) = (29/479001600)*n^12 + (29/8870400)*n^11 + (3083/43545600)*n^10 + (233/290304)*n^9 + (73739/14515200)*n^8 + (48151/2419200)*n^7 + (2494049/43545600)*n^6 + (31657/483840)*n^5 - (1169489/10886400)*n^4 - (1024151/1814400)*n^3 + (2116423/831600)*n^2 - (601/27720)*n - 1

A252973 Number of nX5 nonnegative integer arrays with upper left 0 and lower right n+5-5 and value increasing by 0 or 1 with every step right or down.

Original entry on oeis.org

4, 61, 770, 6997, 46812, 248182, 1100210, 4230324, 14477724, 44951694, 128484004, 341970798, 855386126, 2025957453, 4571859908, 9881224135, 20544547580, 41246142411, 80218821614, 151563108019, 278867435440, 500751223536
Offset: 1

Views

Author

R. H. Hardin, Dec 25 2014

Keywords

Comments

Column 5 of A252976

Examples

			Some solutions for n=4
..0..1..1..1..1....0..1..1..1..1....0..1..2..2..3....0..1..2..2..2
..0..1..2..2..2....0..1..2..2..2....1..1..2..2..3....0..1..2..2..3
..1..2..2..3..3....1..2..3..3..3....1..2..2..3..4....1..1..2..3..4
..1..2..2..3..4....2..3..3..3..4....2..2..3..4..4....2..2..3..4..4
		

Formula

Empirical: a(n) = (29/130767436800)*n^15 + (29/1743565824)*n^14 + (761/1437004800)*n^13 + (4567/479001600)*n^12 + (156803/1437004800)*n^11 + (12553/14515200)*n^10 + (4753991/914457600)*n^9 + (7470857/304819200)*n^8 + (5376871/65318400)*n^7 + (1929223/10886400)*n^6 + (43011707/179625600)*n^5 + (2111353/19958400)*n^4 + (648195787/454053600)*n^3 + (11630747/16816800)*n^2 + (39227/9240)*n - 3

A252974 Number of nX6 nonnegative integer arrays with upper left 0 and lower right n+6-5 and value increasing by 0 or 1 with every step right or down.

Original entry on oeis.org

10, 192, 2859, 30802, 248182, 1592348, 8528422, 39423196, 161160206, 593478797, 1997447386, 6215980425, 18056320047, 49345966862, 127715626611, 314800577783, 742509146839, 1682790560239, 3677643193138, 7774488966837, 15941255148133
Offset: 1

Views

Author

R. H. Hardin, Dec 25 2014

Keywords

Comments

Column 6 of A252976

Examples

			Some solutions for n=4
..0..1..1..2..3..4....0..1..2..2..3..4....0..1..1..2..3..3....0..1..1..2..3..3
..0..1..2..3..4..4....1..2..3..3..3..4....0..1..2..2..3..4....1..1..2..2..3..3
..1..2..3..4..4..4....2..3..3..3..3..4....0..1..2..3..4..5....1..2..2..3..3..4
..2..3..3..4..4..5....3..3..3..4..4..5....1..2..3..4..4..5....2..2..2..3..4..5
		

Formula

Empirical: a(n) = (883/1600593426432000)*n^18 + (883/16167610368000)*n^17 + (148963/62768369664000)*n^16 + (6599/108972864000)*n^15 + (8020459/7846046208000)*n^14 + (3062099/249080832000)*n^13 + (813101243/7242504192000)*n^12 + (165163519/201180672000)*n^11 + (1074230093/219469824000)*n^10 + (564482173/24385536000)*n^9 + (410608176823/4828336128000)*n^8 + (212043001/870912000)*n^7 + (12296690400809/23538138624000)*n^6 + (525004330021/653837184000)*n^5 + (1880413300609/1307674368000)*n^4 + (10237127057/6054048000)*n^3 + (183696263083/30875644800)*n^2 + (15176011/12252240)*n - 2

A252969 Number of n X n nonnegative integer arrays with upper left 0 and lower right n+n-5 and value increasing by 0 or 1 with every step right or down.

Original entry on oeis.org

0, 0, 18, 1236, 46812, 1592348, 54926890, 1988261908, 75922639116, 3044977814280, 127417950149256, 5527784646050032, 247288999212565632, 11357451257590359840, 533618856431642996126, 25573783371050570978268, 1247199857452953231731592, 61772272799794134860411162
Offset: 1

Views

Author

R. H. Hardin, Dec 25 2014

Keywords

Crossrefs

Diagonal of A252976.

Extensions

a(16)-a(18) from Alois P. Heinz, Feb 07 2019
Showing 1-9 of 9 results.