cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253026 T(n,k) = Number of n X k nonnegative integer arrays with upper left 0 and lower right its king-move distance away minus 1 and every value within 1 of its king move distance from the upper left and every value increasing by 0 or 1 with every step right, diagonally se or down.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 3, 5, 5, 3, 4, 9, 5, 9, 4, 5, 13, 21, 21, 13, 5, 6, 17, 37, 21, 37, 17, 6, 7, 21, 53, 85, 85, 53, 21, 7, 8, 25, 69, 149, 85, 149, 69, 25, 8, 9, 29, 85, 213, 341, 341, 213, 85, 29, 9, 10, 33, 101, 277, 597, 341, 597, 277, 101, 33, 10, 11, 37, 117, 341, 853, 1365
Offset: 1

Views

Author

R. H. Hardin, Dec 26 2014

Keywords

Examples

			Table starts:
.0..1...2...3....4....5.....6.....7.....8.....9.....10.....11.....12......13
.1..1...5...9...13...17....21....25....29....33.....37.....41.....45......49
.2..5...5..21...37...53....69....85...101...117....133....149....165.....181
.3..9..21..21...85..149...213...277...341...405....469....533....597.....661
.4.13..37..85...85..341...597...853..1109..1365...1621...1877...2133....2389
.5.17..53.149..341..341..1365..2389..3413..4437...5461...6485...7509....8533
.6.21..69.213..597.1365..1365..5461..9557.13653..17749..21845..25941...30037
.7.25..85.277..853.2389..5461..5461.21845.38229..54613..70997..87381..103765
.8.29.101.341.1109.3413..9557.21845.21845.87381.152917.218453.283989..349525
.9.33.117.405.1365.4437.13653.38229.87381.87381.349525.611669.873813.1135957
Some solutions for n=4 and k=4:
..0..1..2..2....0..1..1..2....0..0..1..2....0..1..2..2....0..1..1..2
..1..1..2..2....0..1..1..2....0..0..1..2....1..1..2..2....0..1..2..2
..2..2..2..2....1..1..1..2....1..1..1..2....1..2..2..2....1..1..2..2
..2..2..2..2....2..2..2..2....2..2..2..2....2..2..2..2....2..2..2..2
		

Crossrefs

Column 1 is A000027(n-1).
Column 2 is A004766(n-2).
Diagonal is A002450(n-1).

Formula

T(n,k) = (n-k)*4^(k-1) + (4^(k-1)-1)/3 for all n>=k>=1 (Thm. 2 in the paper of Dougerty-Bliss and Kauers cited above). - Manuel Kauers, Sep 06 2023
T(n,k) = T(k,n) for all n,k.