cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253046 An involution of the natural numbers: if n = 2*p_i then replace n with 3*p_{i+1}, and conversely if n = 3*p_i then replace n with 2*p_{i-1}, where p_i denotes the i-th prime.

Original entry on oeis.org

1, 2, 3, 9, 5, 15, 7, 8, 4, 21, 11, 12, 13, 33, 6, 16, 17, 18, 19, 20, 10, 39, 23, 24, 25, 51, 27, 28, 29, 30, 31, 32, 14, 57, 35, 36, 37, 69, 22, 40, 41, 42, 43, 44, 45, 87, 47, 48, 49, 50, 26, 52, 53, 54, 55, 56, 34, 93, 59, 60, 61, 111, 63, 64, 65, 66, 67
Offset: 1

Views

Author

N. J. A. Sloane, Dec 26 2014

Keywords

Comments

a(m) != m iff m is a term of A253106, i.e., a semiprime divisible by 2 or 3; a(A100484(n)) > A100484(n); a(A001748(n)) < A001748(n). - Reinhard Zumkeller, Dec 26 2014

Crossrefs

Programs

  • Haskell
    a253046 n | i == 0 || p > 3 = n
              | p == 2          = 3 * a000040 (i + 1)
              | otherwise       = 2 * a000040 (i - 1)
                where i = a049084 (div n p);  p = a020639 n
    -- Reinhard Zumkeller, Dec 26 2014
    
  • Mathematica
    a253046[n_] := Block[{f},
      f[x_] := Which[PrimeQ[x/2], 3 NextPrime[x/2],
        PrimeQ[x/3], 2 NextPrime[x/3, -1],
    True, x];Array[f, n]]; a253046[67] (* Michael De Vlieger, Dec 27 2014 *)
  • Python
    from sympy import isprime, nextprime, prevprime
    def A253046(n):
        q2, r2 = divmod(n,2)
        if not r2 and isprime(q2):
            return 3*nextprime(q2)
        else:
            q3, r3 = divmod(n,3)
            if not r3 and isprime(q3):
                return 2*prevprime(q3)
            return n # Chai Wah Wu, Dec 27 2014