cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A255048 Partial sums of A253088.

Original entry on oeis.org

1, 10, 22, 62, 86, 174, 222, 370, 450, 614, 786, 1082, 1318, 1698, 2022, 2522, 2958, 3510, 4062, 4706, 5394, 6330, 7118, 8286, 9214, 10510, 11554, 12998, 14350, 16118, 17694, 19830, 21558, 23674, 25666, 27930, 30218, 32822, 35358, 38414, 41226, 44606, 47718, 51582, 55066, 59270, 63106, 67870, 71990, 76738, 81194
Offset: 0

Views

Author

Omar E. Pol, Feb 13 2015

Keywords

Comments

Also, total number of cubic ON cells after n generations in a three-dimensional cellular automaton in which A253088(n) gives the number of cubic ON cells in the n-th level of the structure starting from the top. An ON cell remains ON forever. The structure looks like an irregular stepped pyramid.

Crossrefs

A169707 Total number of ON cells at stage n of two-dimensional cellular automaton defined by "Rule 750" using the von Neumann neighborhood.

Original entry on oeis.org

1, 5, 9, 21, 25, 37, 57, 85, 89, 101, 121, 149, 169, 213, 281, 341, 345, 357, 377, 405, 425, 469, 537, 597, 617, 661, 729, 805, 889, 1045, 1241, 1365, 1369, 1381, 1401, 1429, 1449, 1493, 1561, 1621, 1641, 1685, 1753, 1829, 1913, 2069, 2265, 2389, 2409, 2453, 2521
Offset: 1

Views

Author

N. J. A. Sloane, Apr 17 2010

Keywords

Comments

Square grid, 4 neighbors per cell (N, E, S, W cells), turn ON iff exactly 1 or 3 neighbors are ON; once ON, cells stay ON.
The terms agree with those of A246335 for n <= 11, although the configurations are different starting at n = 7. - N. J. A. Sloane, Sep 21 2014
Offset 1 is best for giving a formula for a(n), although the Maple and Mathematica programs index the states starting at state 0.
It appears that this shares infinitely many terms with both A162795 and A147562, see Formula section and Example section. - Omar E. Pol, Feb 19 2015

Examples

			Divides naturally into blocks of sizes 1,2,4,8,16,...:
1,
5, 9,
21, 25, 37, 57,
85, 89, 101, 121, 149, 169, 213, 281, <- terms 8 through 15
341, 345, 357, 377, 405, 425, 469, 537, 597, 617, 661, 729, 805, 889, 1045, 1241,
1365, 1369, 1381, 1401, 1429, 1449, 1493, 1561, 1621, 1641, 1685, 1753, 1829, 1913, 2069, 2265, 2389, 2409, 2453, 2521, ...
From _Omar E. Pol_, Feb 18 2015: (Start)
Also, written as an irregular triangle T(j,k), k>=1, in which the row lengths are the terms of A011782:
1;
5;
9,   21;
25,  37,   57,  85;
89,  101, 121, 149, 169, 213, 281, 341;
345, 357, 377, 405, 425, 469, 537, 597, 617, 661, 729, 805, 889, 1045, 1241, 1365;
The right border gives the positive terms of A002450.
It appears that T(j,k) = A162795(j,k) = A147562(j,k), if k is a power of 2, for example: it appears that the three mentioned triangles only share the elements from the columns 1, 2, 4, 8, 16, ...
(End)
		

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 928.

Crossrefs

Cf. A169708 (first differences), A147562, A147582, A169648, A169649, A169709, A169710, A246333, A246334, A246335, A246336, A253098 (partial sums).
See A253088 for the analogous CA using Rule 750 and a 9-celled neighborhood.

Programs

  • Maple
    (Maple program that uses the actual definition of the automaton, rather than the (conjectured) formula, from N. J. A. Sloane, Feb 15 2015):
    # Count terms in a polynomial:
    C := f->`if`(type(f, `+`), nops(f), 1);
    # Replace all nonzero coeffts by 1:
    bool := proc(f) local ix, iy, f2, i, t1, t2, A;
    f2:=expand(f);
    if whattype(f) = `+` then
    t1:=nops(f2); A:=0;
    for i from 1 to t1 do t2:=op(i, f2); ix:=degree(t2, x); iy:=degree(t2, y);
    A:=A+x^ix*y^iy; od: A;
    else ix:=degree(f2, x); iy:=degree(f2, y); x^ix*y^iy;
    fi;
    end;
    # a loop that produces M steps of A169707 and A169708:
    M:=20;
    F:=x*y+x/y+1/x*y+1/x/y mod 2;
    GG[0]:=1;
    for n from 1 to M do dd[n]:=expand(F*GG[n-1]) mod 2;
    GG[n]:=bool(GG[n-1]+dd[n]);
    lprint(n,C(GG[n]), C(GG[n]-GG[n-1])); od:
  • Mathematica
    Map[Function[Apply[Plus,Flatten[ #1]]], CellularAutomaton[{ 750, {2,{{0,2,0},{2,1,2},{0,2,0}}},{1,1}},{{{1}},0},100]]
    ArrayPlot /@ CellularAutomaton[{750, {2, {{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}}, {1, 1}}, {{{1}}, 0}, 23]
    (* The next two lines deal with the equivalent CA based on neighbors NW, NE, SE, SW. This is to facilitate the comparison with A246333 and A246335 *)
    Map[Function[Apply[Plus, Flatten[ #1]]], CellularAutomaton[{ 750, {2, {{2, 0, 2}, {0, 1, 0}, {2, 0, 2}}}, {1, 1}}, {{{1}}, 0}, 100]]
    ArrayPlot /@ CellularAutomaton[{750, {2, {{2, 0, 2}, {0, 1, 0}, {2, 0, 2}}}, {1, 1}}, {{{1}}, 0}, 23]

Formula

a(2^k + i) = (4^(k+1)-1)/3 + 4*A246336(i), for k >= 0, 0 <= i < 2^k. For example, if n = 15 = 2^3 + 7, so k=3, i=7, we have a(15) = (4^4-1)/3 + 4*A246336(7) = 85 + 4*49 = 281.
a(n) = 1 + 2*(A139250(n) - A160552(n)) = A160164(n) - A170903(n) = A187220(n) + 2*(A160552(n-1)). - Omar E. Pol, Feb 18 2015
It appears that a(n) = A162795(n) = A147562(n), if n is a member of A048645, otherwise a(n) > A162795(n) > A147562(n). - Omar E. Pol, Feb 19 2015
It appears that a(n) = 1 + 4*A255747(n-1). - Omar E. Pol, Mar 05 2015
It appears that a(n) = 1 + 4*(A139250(n-1) - (a(n-1) - 1)/4), n > 1. - Omar E. Pol, Jul 24 2015
It appears that a(2n) = 1 + 4*A162795(n). - Omar E. Pol, Jul 04 2017

Extensions

Edited (added formula, illustration, etc.) by N. J. A. Sloane, Aug 30 2014
Offset changed to 1 by N. J. A. Sloane, Feb 09 2015

A169708 First differences of A169707.

Original entry on oeis.org

1, 4, 4, 12, 4, 12, 20, 28, 4, 12, 20, 28, 20, 44, 68, 60, 4, 12, 20, 28, 20, 44, 68, 60, 20, 44, 68, 76, 84, 156, 196, 124, 4, 12, 20, 28, 20, 44, 68, 60, 20, 44, 68, 76, 84, 156, 196, 124, 20, 44, 68, 76, 84, 156, 196, 140, 84, 156, 212, 236, 324, 508, 516, 252, 4, 12, 20, 28, 20
Offset: 0

Views

Author

N. J. A. Sloane, Apr 17 2010

Keywords

Examples

			From _Omar E. Pol_, Feb 13 2015: (Start)
Written as an irregular triangle in which row lengths are 1,1,2,4,8,16,32,... the sequence begins:
1;
4;
4,12;
4,12,20,28;
4,12,20,28,20,44,68,60;
4,12,20,28,20,44,68,60,20,44,68,76,84,156,196,124;
4,12,20,28,20,44,68,60,20,44,68,76,84,156,196,124,20,44,68,76,84,156,196,140,84,156,212,236,324,508,516,252;
It appears that the row sums give A000302.
It appears that the right border gives A173033.
(End)
		

Crossrefs

Formula

It appears that a(n) = 4*A160552(n), n >= 1. - Omar E. Pol, Feb 13 2015

Extensions

Initial 1 added by Omar E. Pol, Feb 13 2015

A262609 Divisors of 1728.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 64, 72, 96, 108, 144, 192, 216, 288, 432, 576, 864, 1728
Offset: 1

Views

Author

Omar E. Pol, Nov 20 2015

Keywords

Comments

A000578(12) = 1728 is the cube of 12.
The number of divisors of 1728 is A000005(1728) = 28.
The sum of the divisors of 1728 is A000203(1728) = 5080.
The prime factorization of 1728 is 2^6 * 3^3.
1728 + 1 = A001235(1) = A011541(2) = 1729 is the Hardy-Ramanujan number.
Three examples related to cellular automata:
1728 is also the number of ON cells after 32 generations of the cellular automata A160239 and A253088.
1728 is also the total number of ON cells around the central ON cell after 24 generations of the cellular automata A160414 and A256530.
1728 is also the total number of ON cells around the central ON cell after 43 generations of the cellular automata A160172 and A255366.

Examples

			a(3) * a(26) = 3 * 576 = 1728.
a(4) * a(25) = 4 * 432 = 1728.
a(5) * a(24) = 6 * 288 = 1728.
		

Crossrefs

Programs

  • Mathematica
    Divisors[1728]
  • PARI
    divisors(1728)
  • Sage
    divisors(1728);
    
Showing 1-4 of 4 results.