A253107 Number of Eulerian cycles in a lattice graph bounded by the eight equations x+y=-2n, x+y=2n, x-y=-2n, x-y=2n, x=1-2n, x=2n-1, y=1-2n, and y=2n-1 (Aztec Diamond graph).
1, 40, 132160, 33565612800, 641149227424067584, 911979417737022109612195840, 96089134887576552087085389330051891200, 747578503218020593242369202628724536730457230016512
Offset: 1
Keywords
Links
- P. Audibert, Mathematics for Informatics and Computer Science, Wiley, 2010, p. 832.
- Muhammad Kholilurrohman and Shin-ichi Minato, An Efficient Algorithm for Enumerating Eulerian Paths, Hokkaido University, Division of Computer Science, TCS Technical Reports, TCS-TR-A-14-77, Oct. 2014.
- Eric Weisstein's World of Mathematics, Eulerian Cycle