A253144 Number of partitions of n into distinct parts congruent to 1, 2, or 4 modulo 6.
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 6, 7, 9, 10, 11, 12, 13, 14, 16, 18, 19, 21, 23, 25, 28, 31, 34, 37, 40, 43, 47, 52, 56, 61, 66, 71, 78, 85, 92, 99, 107, 115, 124, 135, 145, 156, 168, 180, 194, 210, 226, 242, 260, 278, 297, 320, 343, 367, 393, 420, 449, 481, 516, 550, 587, 626, 666, 712, 760, 810, 863, 919, 978, 1041, 1110, 1180, 1254, 1333, 1414, 1503, 1598, 1697, 1801
Offset: 0
Keywords
Examples
a(14) = 5, the valid partitions being 14, 13+1, 10+4, 8+4+2, and 7+4+2+1.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- K. Alladi and G. E. Andrews, The dual of Göllnitz's (big) partition theorem, Ramanujan J. 36 (2015), 171-201.
Crossrefs
Cf. A056970.
Programs
-
Maple
series(mul((1+x^(6*k+1))*(1+x^(6*k+2))*(1+x^(6*k+4)),k=0..100),x=0,100)
Formula
a(n) ~ exp(sqrt(n/6)*Pi) / (2^(17/12) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, May 24 2018
Comments