cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253183 Expansion of (q^3 * psi(q) * psi(q^23))^2 in powers of q where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 1, 2, 2, 0, 3, 2, 0, 2, 2, 2, 1, 2, 0, 2, 4, 0, 2, 0, 1, 4, 2, 2, 6, 4, 4, 6, 2, 8, 5, 4, 4, 4, 6, 2, 8, 2, 6, 10, 0, 4, 3, 4, 8, 6, 5, 6, 7, 4, 6, 8, 7, 4, 8, 6, 5, 8, 3, 10, 6, 8, 8, 0, 4, 8, 9, 6, 6, 12, 8, 8, 11, 8, 10, 8, 9, 4, 14, 12, 10, 12, 8, 8
Offset: 6

Views

Author

Michael Somos, Mar 23 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q^6 + 2*q^7 + q^8 + 2*q^9 + 2*q^10 + 3*q^12 + 2*q^13 + 2*q^15 + ...
		

Crossrefs

Cf. A033782.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ q^6 (QPochhammer[ q^2] QPochhammer[ q^46])^4 / (QPochhammer[ q] QPochhammer[ q^23])^2, {q, 0 ,n}];
  • PARI
    {a(n) = my(A); if( n<6, 0, n -= 6; A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^46 + A))^4 / (eta(x + A) * eta(x^23 + A))^2, n))};

Formula

Expansion of (eta(q^2) * eta(q^46))^4 / (eta(q) * eta(q^23))^2 in powers of q.
Euler transform of a period 46 sequence.
G.f.: x^6 * (Sum_{k>0} x^(k * (k-1) / 2))^2 * (Sum_{k>0} x^(23 * k * (k-1) / 2))^2.
G.f.: x^6 * (Product_{k>0} (1 + x^k) * (1 - x^(2*k)) * (1 + x^(23*k)) * (1 - x^(46*k)))^2.
Convolution square of A033782.