A253234 Smallest prime p such that p^2 divides n^(p-1)-(n-1)^(p-1).
1093, 23, 5, 3, 3457, 72673, 13, 67, 67
Offset: 2
Links
- Eric Chen, Table of n, a(n) for n = 2..1000 status (test limit: 6.5*10^10)
- Richard Fischer, Primes p such that (n+1)^(p-1)-n^(p-1) == 0 (mod p^2)
Programs
-
Mathematica
f[n_] := Block[{k = 1}, While[k < 10^8 && PowerMod[n, Prime[k] - 1, Prime[k]^2] != PowerMod[n - 1, Prime[k] - 1, Prime[k]^2], k++ ]; If[k == 10^8, 0, Prime[k]]]; Table[ f[n], {n, 2, 75}]
-
PARI
for(n=2, 10, forprime(p=2, 1e8, if(Mod(n, p^2)^(p-1)==Mod(n-1, p^2)^(p-1), print1(p, ", "); next({2}))); print1("--, "))
Formula
a(9k+5) = 3.
Comments