A253239 Numbers k such that k^2 + k + 72491 is prime.
1, 2, 3, 6, 7, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 53, 55, 56, 57, 58, 59, 64, 65, 66, 67, 72, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 98, 100
Offset: 1
Examples
k k^2 + k + 72491 0 72491 = 71*1021 1 72493 (prime) 2 72497 (prime) 3 72503 (prime) 4 72511 = 59*1229 5 72521 = 47*1543 6 72533 (prime) 7 72547 (prime) 8 72563 = 149*487 9 72581 = 181*401 etc.
Links
- Eric Chen, Table of n, a(n) for n = 1..4534 (all terms up to 10000)
- C. Rivera, Prime producing polynomials
- Eric Weisstein's World of Mathematics, Prime-generating polynomial
Programs
-
Magma
[n: n in [0..100] | IsPrime(n^2 + n + 72491)]; // Vincenzo Librandi, Apr 20 2015
-
Maple
select(t -> isprime(t^2+t+72491), [$0..100]);
-
Mathematica
Select[Range[100], PrimeQ[#^2 + # + 72491] &]
-
PARI
v=[ ]; for(n=0, 100, if(isprime(n^2+n+72491), v=concat(v, n), )); v
Comments