A260080 Least positive integer k such that prime(k*n)^2 - 2 = prime(i*n)*prime(j*n) for some integers 0 < i < j.
5, 18, 18, 9, 115, 208, 69, 373, 68, 430, 8, 214, 57, 1887, 1255, 295, 880, 542, 5612, 767, 1562, 40, 853, 884, 753, 4332, 4750, 6077, 799, 1394, 639, 5442, 4785, 440, 7417, 1290, 15830, 27745, 3927, 5701, 1891, 22008, 8243, 6031, 9172, 5949, 43286, 20778, 9876, 12472
Offset: 1
Keywords
Examples
a(1) = 5 since prime(5*1)^2-2 = 11^2-2 = 119 = 7*17 = prime(4*1)*prime(7*1). a(66) = 149073 since prime(149073*66)^2-2 = 176365951^2-2 = 31104948672134399 = 3160879*9840600881 = prime(3448*66)*prime(9840600881*66).
References
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..105
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
Dv[n_]:=Divisors[Prime[n]^2-2] L[n_]:=Length[Dv[n]] P[k_,n_]:=L[k*n]==4&&PrimeQ[Part[Dv[k*n],2]]&&Mod[PrimePi[Part[Dv[k*n],2]],n]==0&&PrimeQ[Part[Dv[k*n],3]]&&Mod[PrimePi[Part[Dv[k*n],3]],n]==0 Do[k=0;Label[bb];k=k+1;If[P[k,n],Goto[aa]];Goto[bb];Label[aa];Print[n," ", k];Continue,{n,1,50}]
Comments