cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253288 Each term a(n) satisfies four properties: 1, divisible by all prime factors of n; 2, divisible by only the prime factors of n; 3, not equal to any of the terms a(1), a(2), ... a(n-1); 4, smallest number satisfying 1-3 if A005361(n) is even, or second smallest number satisfying 1-3 if A005361(n) is odd.

Original entry on oeis.org

1, 4, 9, 2, 25, 12, 49, 16, 3, 20, 121, 6, 169, 28, 45, 8, 289, 18, 361, 10, 63, 44, 529, 36, 5, 52, 81, 14, 841, 60, 961, 64, 99, 68, 175, 24, 1369, 76, 117, 50, 1681, 84, 1849, 22, 15, 92, 2209, 48, 7, 40, 153, 26, 2809, 72, 275, 98, 171, 116, 3481, 30, 3721, 124, 21, 32
Offset: 1

Views

Author

N. J. A. Sloane, Dec 29 2014

Keywords

Comments

This sequence is permutation of the positive integers.
The prime p occurs at n = p^2.
Multiples of a number x have density 1/x.
Conjecture: this permutation of positive integers is self-inverse. Compare with A358971. The principal distinction between this sequence and A358971 is that fixed points aside from A358971(1) = 1 are explicitly ruled out in the latter. - Michael De Vlieger, Dec 10 2022

References

  • Brad Klee, Posting to Sequence Fans Mailing List, Dec 21, 2014.

Crossrefs

Cf. A005361 (Product of exponents of prime factorization of n), A358971.

Programs

  • Maple
    A253288div := proc(a,n)
        local npr,d,apr ;
        npr := numtheory[factorset](n) ;
        for d in npr do
            if modp(a,d) <> 0 then
                return false;
            end if;
        end do:
        apr := numtheory[factorset](a) ;
        if apr minus npr = {} then
            true;
        else
            false;
        end if;
    end proc:
    A253288 := proc(n)
        option remember;
        local a,i,prev,act,ev ;
        if n =1 then
            1;
        else
            act := 1 ;
            if type(A005361(n),'even') then
                ev := true;
            else
                ev := false;
            end if;
            for a from 1 do
                prev := false;
                for i from 1 to n-1 do
                    if procname(i) = a then
                        prev := true;
                        break;
                    end if;
                end do:
                if not prev then
                    if A253288div(a,n) then
                        if ev or act > 1 then
                            return a;
                        else
                            act := act+1 ;
                        end if;
                    end if;
                end if;
            end do:
        end if;
    end proc:
    seq(A253288(n),n=1..80) ; # R. J. Mathar, Jan 22 2015
  • Mathematica
    nn = 1000; c[] = False; q[] = 1; f[n_] := f[n] = Map[Times @@ # &, Transpose@ FactorInteger[n]]; a[1] = 1; c[1] = True; u = 2; Do[Which[PrimeQ[n], k = n^2, PrimeQ@ Sqrt[n], k = Sqrt[n], SquareFreeQ[n], k = First@ f[n]; m = q[k]; While[Nand[! c[k m], k m != n, Divisible[k, First@ f[m]]], m++]; While[Nor[c[q[k] k], Divisible[k, First@ f[q[k]]]], q[k]++]; k *= m, True, t = 0; Set[{k, s}, {First[#], 1 + Boole@ OddQ@ Last[#]} &[f[n]]]; m = q[k]; Until[t == s, If[m > q[k], m++]; While[Nand[! c[k m], Divisible[k, First@f[m]]], m++]; t++]; If[s == 1, While[Nor[c[q[k] k], Divisible[k, First@ f[q[k]]]], q[k]++]]; k *= m]; Set[{a[n], c[k]}, {k, True}]; If[k == u, While[c[u], u++]], {n, 2, nn}]; Array[a, nn] (* Michael De Vlieger, Dec 10 2022 *)

Extensions

Terms beyond 361 from R. J. Mathar, Jan 22 2015