A253295 Prime factor look-and-say sequence starting with a(0) = 8.
8, 32, 52, 22113, 5317113, 131167110613, 1711111711229181533, 1761140131560305063481, 1313718313871371493773936301, 125111501315199577167049112574051, 33185242436199338915435977096119517, 149731486009055371137303679066123116017
Offset: 0
Examples
a(0) = 2^3 so a(1) = 32. a(1) = 2^5 so a(2) = 52. a(2) = 2^2 * 13^1 so a(3) = 22113. a(3) = 3^5 * 7^1 * 13^1 so a(4) = 5317113.
Links
- Robert Israel, Table of n, a(n) for n = 0..20
- Mathematics Stack Exchange, Does my "Prime Factor Look and Say" sequence always end?
Crossrefs
Cf. A123132
Programs
-
Maple
ncat:= (x,y) -> 10^(1+ilog10(y))*x + y: f:= proc(x) local L,y,t; L:= sort(ifactors(x)[2],(a,b)->a[1]
-
Mathematica
a253295[n_] := Block[{a, t = Table[8, {n}]}, a[x_] := FromDigits[Flatten[IntegerDigits[Reverse /@ FactorInteger[x]]]]; Do[t[[i]] = a[t[[i - 1]]], {i, 2, n}]; t]; a253295[13] (* Michael De Vlieger, Dec 29 2014 *)
-
Python
from sympy import factorint A253295_list = [8] for _ in range(10): A253295_list.append(int(''.join((str(e)+str(p) for p, e in sorted(factorint(A253295_list[-1]).items()))))) # Chai Wah Wu, Dec 30 2014
Formula
a(n+1) = A123132(a(n)).
Comments