A253296 Numbers with more composite divisors than prime divisors such that all the prime divisors are smaller than the composite divisors.
8, 12, 16, 18, 24, 27, 30, 32, 36, 45, 48, 50, 54, 63, 64, 70, 72, 75, 81, 90, 96, 98, 105, 108, 125, 128, 135, 144, 147, 150, 154, 162, 165, 175, 182, 189, 192, 195, 216, 225, 231, 242, 243, 245, 250, 256, 270, 273, 275, 286, 288, 315, 324, 325, 338, 343, 350
Offset: 1
Keywords
Examples
36 is in the sequence because its nontrivial divisors are 2, 3, 4, 6, 9, 12, 18, and of these, the first two are prime and the rest are composite. 40 is not in the sequence because its nontrivial divisors are 2, 4, 5, 8, 10, 20, and the composite divisor 4 falling between the prime divisors 2 and 5 disqualifies 40 from membership in the sequence.
Crossrefs
Cf. A137428.
Programs
-
Maple
filter:= proc(n) local f,x; f:= ifactors(n)[2]; if mul(t[2]+1,t=f) <= 2*nops(f)+1 then return false fi; if f[1,2] > 1 then x:= f[1,1]^2 else x:= f[1,1]*f[2,1] fi; max(seq(t[1],t=f)) < x end proc: select(filter, [$1..1000]); # Robert Israel, Jan 01 2015
-
Mathematica
ntd[n_] := (dlist = Divisors[n]; dlist[[2 ;; Length[dlist] - 1]]) test[n_] := (tlist = ntd[n]; If[tlist == {}, False, index = 1; While[index <= Length[tlist] && PrimeQ[tlist[[index]]] == True, index = index + 1]; If[index == 1 || index > Length[tlist], False, While[index <= Length[tlist] && PrimeQ[tlist[[index]]] == False, index = index + 1]; If[index <= Length[tlist], False, True]]]) Select[Table[n, {n, 2, 2500, 1}], test] (* Savoric *) primeDivs[n_Integer] := Select[Divisors[n], PrimeQ]; compDivs[n_Integer] := Drop[Complement[Divisors[n], primeDivs[n]], 1]; Select[Range[4, 500], Not[PrimeQ[#]] && primeDivs[#][[-1]] < compDivs[#][[1]] && Length[primeDivs[#]] < Length[compDivs[#]] &] (* Alonso del Arte, Dec 31 2014 *) fQ[n_] := Block[{d = PrimeQ@ Most@ Rest@ Divisors@ n}, d[[1]] == True && d[[-1]] == False && Length@ Split@ d == 2]; Select[ Range@ 350, fQ] (* Robert G. Wilson v, Jan 12 2015 *)
Comments