cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Michael Savoric

Michael Savoric's wiki page.

Michael Savoric has authored 4 sequences.

A260598 Numbers n such that the sum of the divisors of n equals the fourth power of the sum of the digits of n.

Original entry on oeis.org

1, 510, 11235, 12243, 14223, 136374, 142494, 145266, 148614, 163158, 171465, 181815, 214863, 240963, 246507, 323976, 397182, 404994, 1548798
Offset: 1

Author

Michael Savoric, Aug 05 2015

Comments

Let n be a k-digit number. Then, sigma(n) >= 10^(k-1) and (9*k)^4 >= sum_of_digits(n)^4. So, n must be less than 10^9. - Hiroaki Yamanouchi, Aug 29 2015

Examples

			510 is in the sequence, since (1 + 2 + 3 + 5 + ... + 255 + 510) = (5 + 1 + 0)^4.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..3*10^6] | DivisorSigma(1,n) eq (&+Intseq(n)^4)]; // Vincenzo Librandi, Aug 29 2015
  • Mathematica
    n = 10000000;
    list = {};
    x = 1;
    While[x <= n,
      If[Total[Divisors[x]] == Total[IntegerDigits[x]]^4,
       AppendTo[list, x]];
      x = x + 1
      ];
    list
  • PARI
    isok(n) = sigma(n) == sumdigits(n)^4; \\ Michel Marcus, Aug 06 2015
    

Formula

A000583(A007953(a(n))) = A000203(a(n)).

A253296 Numbers with more composite divisors than prime divisors such that all the prime divisors are smaller than the composite divisors.

Original entry on oeis.org

8, 12, 16, 18, 24, 27, 30, 32, 36, 45, 48, 50, 54, 63, 64, 70, 72, 75, 81, 90, 96, 98, 105, 108, 125, 128, 135, 144, 147, 150, 154, 162, 165, 175, 182, 189, 192, 195, 216, 225, 231, 242, 243, 245, 250, 256, 270, 273, 275, 286, 288, 315, 324, 325, 338, 343, 350
Offset: 1

Author

Michael Savoric, Dec 30 2014

Keywords

Comments

List of composite numbers with n >= 2 nontrivial divisors where the k smallest nontrivial divisors are all primes and the n - k largest nontrivial divisors are all nonprimes, 1 <= k < n.
Here the term "nontrivial divisors" only serves to exclude 1.
Except for semiprimes, all composite numbers have more composite divisors than prime divisors. - Robert G. Wilson v, Jan 12 2015

Examples

			36 is in the sequence because its nontrivial divisors are 2, 3, 4, 6, 9, 12, 18, and of these, the first two are prime and the rest are composite.
40 is not in the sequence because its nontrivial divisors are 2, 4, 5, 8, 10, 20, and the composite divisor 4 falling between the prime divisors 2 and 5 disqualifies 40 from membership in the sequence.
		

Crossrefs

Cf. A137428.

Programs

  • Maple
    filter:= proc(n)
    local f,x;
    f:= ifactors(n)[2];
    if mul(t[2]+1,t=f) <= 2*nops(f)+1 then return false fi;
    if f[1,2] > 1 then x:= f[1,1]^2 else x:= f[1,1]*f[2,1] fi;
    max(seq(t[1],t=f)) < x
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Jan 01 2015
  • Mathematica
    ntd[n_] := (dlist = Divisors[n]; dlist[[2 ;; Length[dlist] - 1]])
    test[n_] := (tlist = ntd[n];
      If[tlist == {}, False,
       index = 1;
       While[index <= Length[tlist] && PrimeQ[tlist[[index]]] == True,
        index = index + 1];
       If[index == 1 || index > Length[tlist], False,
        While[index <= Length[tlist] && PrimeQ[tlist[[index]]] == False,
         index = index + 1];
        If[index <= Length[tlist], False, True]]])
    Select[Table[n, {n, 2, 2500, 1}], test] (* Savoric *)
    primeDivs[n_Integer] := Select[Divisors[n], PrimeQ]; compDivs[n_Integer] := Drop[Complement[Divisors[n], primeDivs[n]], 1]; Select[Range[4, 500], Not[PrimeQ[#]] && primeDivs[#][[-1]] < compDivs[#][[1]] && Length[primeDivs[#]] < Length[compDivs[#]] &] (* Alonso del Arte, Dec 31 2014 *)
    fQ[n_] := Block[{d = PrimeQ@ Most@ Rest@ Divisors@ n}, d[[1]] == True && d[[-1]] == False && Length@ Split@ d == 2]; Select[ Range@ 350, fQ] (* Robert G. Wilson v, Jan 12 2015 *)

A248373 Partial sums of primes of form n^2 + (n+1)^2 + (n+2)^2 (A027864).

Original entry on oeis.org

5, 34, 183, 692, 1369, 3246, 6923, 15352, 25101, 37010, 50479, 68268, 90977, 118054, 146283, 191672, 238549, 291618, 361847, 433924, 515601, 616070, 718747, 832824, 961373, 1102642, 1257231, 1437308, 1629337, 1824414, 2031923, 2255512, 2485701, 2746778, 3059767
Offset: 1

Author

Michael Savoric, Oct 05 2014

Keywords

Crossrefs

Cf. A027864.

Programs

  • Mathematica
    f[x_]:=x^2+(x+1)^2+(x+2)^2;
    n=50;result={};counter=0;number=0;
    While[counterHarvey P. Dale, Nov 24 2017 *)
  • PARI
    lista(nn) = {s = 0; for (n=0, nn, if (isprime(p=n^2 + (n+1)^2 + (n+2)^2), s +=p; print1(s, ", ")););} \\ Michel Marcus, Oct 06 2014

A248697 Primes of the form k+(k+3)^2 where k is a nonnegative integer.

Original entry on oeis.org

17, 53, 107, 179, 269, 503, 647, 809, 1187, 1637, 1889, 2447, 2753, 3779, 4157, 4967, 5399, 5849, 6317, 6803, 7307, 7829, 8369, 10709, 11987, 12653, 13337, 14759, 15497, 16253, 17027, 19457, 26729, 29753, 31859, 32939, 35153, 38609, 42227, 44729, 47303, 52667, 55457, 61253, 65789, 68903, 70487, 72089, 73709, 75347
Offset: 1

Author

Michael Savoric, Oct 11 2014

Keywords

Comments

Primes > 3 in A014209. - Klaus Purath, Dec 10 2020

Crossrefs

Cf. A014209.

Programs

  • Magma
    [a: n in [0..250] | IsPrime(a) where a is n^2+7*n+9]; // Vincenzo Librandi, Oct 12 2014
    
  • Maple
    A248697:=n->`if`(isprime(n+(n+3)^2), n+(n+3)^2, NULL): seq(A248697(n), n=1..5*10^2); # Wesley Ivan Hurt, Oct 11 2014
  • Mathematica
    f[x_] := x + (x + 3)^2;
    n = 50; result = {}; counter = 0; number = 0;
    While[counter < n,
    value = f[number];
    If[PrimeQ[value] == True, AppendTo[result, value];counter = counter + 1];
    number = number + 1];result
    Select[Table[n + (n + 3)^2, {n, 0, 300}], PrimeQ] (* Vincenzo Librandi, Oct 12 2014 *)
  • PARI
    for(n=1,10^3,if(isprime(n^2+7*n+9),print1(n^2+7*n+9,", "))) \\ Derek Orr, Oct 12 2014