A253804
a(n) gives the odd leg of the second of the two Pythagorean triangles with hypotenuse A080109(n) = A002144(n)^2. This is the larger of the two possible odd legs.
Original entry on oeis.org
15, 119, 255, 609, 1295, 1519, 2385, 3479, 4015, 4879, 6305, 9999, 9919, 12319, 14385, 16999, 13345, 28545, 32039, 19199, 38415, 50609, 32239, 50369, 65535, 62839, 50279, 64911, 83505, 96719
Offset: 1
n = 7: A080175(7) = 7890481 = 53^4 = 2809^2; A002144(7)^4 = a(7)^2 + (4*A253805(7))^2 = 2385^2 + (4*371)^2.
The other Pythagorean triangle with hypotenuse 53^2 = 2809 has odd leg A253802(7) = 1241 and even leg 4*A253303(7) = 4*630 = 2520: 53^4 = 1241^2 + (4*630)^2.
- L. E. Dickson, History of the Theory of Numbers, Carnegie Institution, Publ. No. 256, Vol. II, Washington D.C., 1920, p. 227.
A253805
a(n) gives one fourth of the even leg of the second of the two Pythagorean triangles with hypotenuse A080109(n) = A002144(n)^2. The odd leg is given in A253804.
Original entry on oeis.org
5, 30, 34, 145, 111, 180, 371, 330, 876, 1560, 1746, 505, 1635, 840, 3014, 3570, 5181, 2249, 1710, 7980, 1379, 3435, 10920, 7230, 2056, 8970, 14490, 11240, 4981, 3900
Offset: 1
n = 7: A080175(7) = 7890481 = 53^4 = 2809^2; A002144(7)^4 = A253804(7)^2 + (4*a(7))^2 = 2385^2 + (4*371)^2.
The other Pythagorean triangle with hypotenuse 53^2 = 2809 has odd leg A253802(7) = 1241 and even leg 4*A253303(7) = 4*630 = 2520: 53^4 = 1241^2 + (4*630)^2.
- L. E. Dickson, History of the Theory of Numbers, Carnegie Institution, Publ. No. 256, Vol. II, Washington D.C., 1920, p. 227.
A253302
Smallest integer m such that gcd{x | sum of proper divisors of x is m} is equal to n, when there are at least two such x's.
Original entry on oeis.org
1, 16, 300, 136, 50316, 186, 97748, 1352, 72318, 1340, 1652, 1356
Offset: 1
For every prime p the sum of proper divisors of p is 1, and the GCD of the primes is 1, so a(1) = 1.
-
build(nb) = {vs = vector(nb); nc = nb^2; forcomposite(n=2, nc, val = sigma(n)-n; if (val <= nb, if (vs[val] == 0, vs[val] = -n, vs[val] = gcd(vs[val], n)););); vs[1] = 1; vs;}
lista() = {vd = build(100000); vmax = 20; vr = vector(vmax); for (ig=1, vmax, for (i=1, #vd, w = vd[i]; if (w ==ig, vr[ig] = i; break;););); for (i=1, #vr, if (vr[i] == 0, break, print1(vr[i], ", ")));}
Showing 1-3 of 3 results.
Comments