A253304 Numbers n such that the sum of the heptagonal numbers H(n) and H(n+1) is equal to the octagonal number O(m) for some m.
1, 22, 77, 1376, 4785, 85302, 296605, 5287360, 18384737, 327731030, 1139557101, 20314036512, 70634155537, 1259142532726, 4378178086205, 78046522992512, 271376407189185, 4837625283003030, 16820959067643277, 299854721023195360, 1042628085786694001
Offset: 1
Examples
1 is in the sequence because H(1)+H(2) = 1+7 = 8 = O(2).
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,62,-62,-1,1).
Programs
-
Mathematica
LinearRecurrence[{1,62,-62,-1,1},{1,22,77,1376,4785},30] (* Harvey P. Dale, Nov 05 2024 *)
-
PARI
Vec(x*(3*x^3+7*x^2-21*x-1)/((x-1)*(x^2-8*x+1)*(x^2+8*x+1)) + O(x^100))
Formula
a(n) = a(n-1)+62*a(n-2)-62*a(n-3)-a(n-4)+a(n-5).
G.f.: x*(3*x^3+7*x^2-21*x-1) / ((x-1)*(x^2-8*x+1)*(x^2+8*x+1)).
Comments