A253802
a(n) gives the odd leg of one of the two Pythagorean triangles with hypotenuse A080109(n) = A002144(n)^2. This is the smaller of the two possible odd legs.
Original entry on oeis.org
7, 65, 161, 41, 1081, 369, 1241, 671, 721, 3471, 959, 9401, 4681, 1695, 3281, 7599, 10199, 24521, 3439, 18335, 37241, 45241, 24465, 29281, 64001, 18561, 31855, 27761, 76601, 7825
Offset: 1
n = 7: A080175(7) = 7890481 = 53^4 = 2809^2; A002144(7)^4 = a(7)^2 + (4*A253803(7))^2 = 1241^2 + (4*630)^2.
The other Pythagorean triangle with hypotenuse 53^2 = 2809 has odd leg A253804(7) = 2385 and even leg 4*A253305(7) = 4*371 = 1484: 53^4 = 2385^2 + (4*371)^2.
- L. E. Dickson, History of the Theory of Numbers, Carnegie Institution, Publ. No. 256, Vol. II, Washington D.C., 1920, p. 227.
A253803
a(n) gives one fourth of the even leg of one of the two Pythagorean triangles with hypotenuse A080109(n) = A002144(n)^2. The odd leg is given in A253802(n).
Original entry on oeis.org
6, 39, 60, 210, 210, 410, 630, 915, 1320, 1780, 2340, 990, 2730, 3164, 4620, 5215, 5610, 4290, 8145, 8106, 2730, 6630, 12116, 12540, 4080, 17485, 17451, 18480, 9690, 24414
Offset: 1
n = 7: A080175(7) = 7890481 = 53^4 = 2809^2; A002144(7)^4 = A253802(7)^2 + (4*a(7))^2 = 1241^2 + (4*630)^2.
The other Pythagorean triangle with hypotenuse
53^2 = 2809 has odd leg A253804(7) = 2385 and even leg 4*A253305(7) = 4*371 = 1484: 53^4 = 2385^2 + (4*371)^2.
- L. E. Dickson, History of the Theory of Numbers, Carnegie Institution, Publ. No. 256, Vol. II, Washington D.C., 1920, p. 227.
A253304
Numbers n such that the sum of the heptagonal numbers H(n) and H(n+1) is equal to the octagonal number O(m) for some m.
Original entry on oeis.org
1, 22, 77, 1376, 4785, 85302, 296605, 5287360, 18384737, 327731030, 1139557101, 20314036512, 70634155537, 1259142532726, 4378178086205, 78046522992512, 271376407189185, 4837625283003030, 16820959067643277, 299854721023195360, 1042628085786694001
Offset: 1
1 is in the sequence because H(1)+H(2) = 1+7 = 8 = O(2).
-
LinearRecurrence[{1,62,-62,-1,1},{1,22,77,1376,4785},30] (* Harvey P. Dale, Nov 05 2024 *)
-
Vec(x*(3*x^3+7*x^2-21*x-1)/((x-1)*(x^2-8*x+1)*(x^2+8*x+1)) + O(x^100))
Showing 1-3 of 3 results.
Comments