A253397 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with every 2X2 subblock antidiagonal maximum minus diagonal minimum nondecreasing horizontally and diagonal maximum minus antidiagonal minimum nondecreasing vertically.
16, 44, 44, 96, 102, 96, 180, 143, 143, 180, 304, 197, 174, 197, 304, 476, 250, 246, 246, 250, 476, 704, 320, 316, 346, 316, 320, 704, 996, 391, 419, 465, 465, 419, 391, 996, 1360, 477, 520, 632, 666, 632, 520, 477, 1360, 1804, 564, 651, 823, 932, 932, 823, 651
Offset: 1
Examples
Some solutions for n=4 k=4 ..1..1..1..1..1....0..0..0..0..0....0..0..0..1..1....0..1..0..1..1 ..1..1..1..1..1....0..0..0..0..1....0..0..0..0..0....1..1..0..0..0 ..1..1..1..1..1....0..0..0..0..1....0..0..0..0..1....1..1..1..1..1 ..1..1..1..1..0....0..0..0..0..1....0..0..1..0..1....1..0..0..0..0 ..0..1..1..1..1....0..0..0..0..1....1..0..1..0..1....1..1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9654
Crossrefs
Column 1 is A217873(n+1)
Formula
Empirical for column k:
k=1: a(n) = (4/3)*n^3 + 4*n^2 + (20/3)*n + 4
k=2: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4) for n>8
k=3: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4) for n>8
k=4: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5) for n>11
k=5: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5) for n>13
k=6: a(n) = 4*a(n-1) -5*a(n-2) +5*a(n-4) -4*a(n-5) +a(n-6) for n>16
k=7: a(n) = 4*a(n-1) -5*a(n-2) +5*a(n-4) -4*a(n-5) +a(n-6) for n>18
Empirical quasipolynomials for column k:
k=2: polynomial of degree 2 plus a quasipolynomial of degree 0 with period 2 for n>4
k=3: polynomial of degree 2 plus a quasipolynomial of degree 0 with period 2 for n>4
k=4: polynomial of degree 3 plus a quasipolynomial of degree 0 with period 2 for n>6
k=5: polynomial of degree 3 plus a quasipolynomial of degree 0 with period 2 for n>8
k=6: polynomial of degree 4 plus a quasipolynomial of degree 0 with period 2 for n>10
k=7: polynomial of degree 4 plus a quasipolynomial of degree 0 with period 2 for n>12
Comments