A253398 Smallest odd k > 1 such that k*2^prime(n) + 1 is prime.
3, 5, 3, 5, 9, 5, 9, 11, 45, 23, 35, 15, 3, 9, 27, 51, 27, 53, 9, 39, 23, 249, 51, 51, 131, 221, 29, 105, 321, 179, 5, 221, 111, 411, 191, 65, 83, 75, 95, 101, 147, 83, 149, 111, 203, 131, 9, 245, 281, 15, 83, 65, 299
Offset: 1
Keywords
Examples
3*2^2 + 1 = 13 (prime), so a(1)=3. 3*2^3 + 1 = 25 (composite), 5*2^3 + 1 = 41 (prime), so a(2)=5. 3*2^5 + 1 = 97 (prime), so a(3)=3.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..1500 (first 1275 terms from Pierre CAMI)
Programs
-
Mathematica
f[n_] := Block[{k = 3, p = 2^Prime@ n}, While[ !PrimeQ[ k*p + 1], k += 2]; k]; Array[f, 53] (* Robert G. Wilson v, Jan 25 2015 *)
-
PARI
a(n)=k=1;while(!isprime((2*k+1)*2^prime(n)+1),k++);2*k+1 vector(100,n,a(n)) \\ Derek Orr, Dec 31 2014
Formula
a(n) = A247479(p_n). - Robert G. Wilson v, Jan 27 2015
Comments