A253475 Indices of centered square numbers (A001844) which are also centered hexagonal numbers (A003215).
1, 6, 55, 540, 5341, 52866, 523315, 5180280, 51279481, 507614526, 5024865775, 49741043220, 492385566421, 4874114620986, 48248760643435, 477613491813360, 4727886157490161, 46801248083088246, 463284594673392295, 4586044698650834700, 45397162391834954701
Offset: 1
Examples
6 is in the sequence because the 6th centered square number is 61, which is also the 5th centered hexagonal number.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (I).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (II).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (III).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (IV).
- Index entries for linear recurrences with constant coefficients, signature (11,-11,1).
Programs
-
Mathematica
LinearRecurrence[{11, -11, 1}, {1, 6, 55}, 25] (* Paolo Xausa, May 30 2025 *)
-
PARI
Vec(x*(5*x-1)/((x-1)*(x^2-10*x+1)) + O(x^100))
Formula
a(n) = 11*a(n-1)-11*a(n-2)+a(n-3).
G.f.: x*(5*x-1) / ((x-1)*(x^2-10*x+1)).
a(n) = sqrt((-2-(5-2*sqrt(6))^n-(5+2*sqrt(6))^n)*(2-(5-2*sqrt(6))^(1+n)-(5+2*sqrt(6))^(1+n)))/(4*sqrt(2)). - Gerry Martens, Jun 04 2015
2*a(n) = 1+A054320(n-1). - R. J. Mathar, Feb 07 2022
Comments