A253545 Decimal expansion of r = 0.527697..., a boundary ratio separating catenoid and Goldschmidt solutions in the minimal surface of revolution problem.
5, 2, 7, 6, 9, 7, 3, 9, 6, 9, 6, 2, 5, 7, 1, 5, 2, 8, 5, 7, 2, 4, 2, 3, 3, 4, 3, 3, 6, 3, 1, 8, 0, 5, 7, 7, 9, 6, 8, 8, 5, 3, 7, 9, 0, 6, 3, 1, 4, 1, 9, 5, 4, 1, 7, 2, 2, 2, 7, 5, 1, 5, 9, 5, 0, 1, 6, 2, 0, 7, 6, 8, 3, 2, 4, 5, 1, 9, 8, 8, 4, 4, 6, 6, 8, 4, 5, 2, 9, 3, 6, 0, 0, 5, 4, 7, 5, 3, 0, 3, 5, 1, 4, 1, 5
Offset: 0
Examples
0.5276973969625715285724233433631805779688537906314195417222751595...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Robert Ferréol's MathCurve, Catenoid
- Eric Weisstein's MathWorld, Laplace Limit
- Eric Weisstein's MathWorld, Minimal Surface of Revolution
Programs
-
Mathematica
digits = 105; u0 = u /. FindRoot[u*Sqrt[u^2-1] + ArcCosh[u] - u^2 == 0, {u, 6/5}, WorkingPrecision -> digits+5]; r = ArcCosh[u0]/u0; RealDigits[r, 10, digits] // First
Formula
arccosh(u)/u, where u = 1.21136... is solution to u*sqrt(u^2-1) + arccosh(u) - u^2 = 0.
Solution of 2*cosh((x^2+1)/2) = x+1/x. - Robert FERREOL, Feb 07 2019
Equals sqrt(A202357). - Hugo Pfoertner, Dec 21 2024
Comments