cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253558 a(n) = A253556(n) + 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 2, 6, 4, 3, 1, 7, 2, 8, 3, 2, 5, 9, 2, 3, 6, 4, 4, 10, 3, 11, 1, 3, 7, 4, 2, 12, 8, 5, 3, 13, 2, 14, 5, 2, 9, 15, 2, 4, 3, 3, 6, 16, 4, 3, 4, 4, 10, 17, 3, 18, 11, 6, 1, 5, 3, 19, 7, 3, 4, 20, 2, 21, 12, 7, 8, 5, 5, 22, 3, 5, 13, 23, 2, 4, 14, 4, 5, 24, 2, 4, 9, 2, 15, 6, 2, 25, 4, 8, 3, 26, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2015

Keywords

Comments

Consider the binary trees illustrated in A252753 and A252755: If we start from any n, computing successive iterations of A253554 until 1 is reached (i.e., we are traversing level by level towards the root of the tree, starting from that vertex of the tree where n is located at), a(n) gives the number of odd numbers encountered on the path (i.e., including both the final 1 and the starting n if it was odd).

Crossrefs

One more than A253556.
Powers of two, A000079, gives the positions of ones.
After n=1, differs from A061395 for the first time at n=21, where a(21) = 2, while A061395(21) = 4.

Programs

Formula

a(n) = A253556(n) + 1.
a(n) = A080791(A252754(n)) + 1. [One more than the number of nonleading 0-bits in A252754(n).]
Other identities.
For all n >= 1:
a(A000040(n)) = n.
For all n >= 2:
a(n) = A000120(A252756(n)). [Binary weight of A252756(n).]
a(n) = A253555(n) - A253559(n).