cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253580 A fractal tree, read by rows: for n > 1: T(n,0) = T(n-1,0)+2, T(n,2*n) = T(n-1,0)+3, and for k=1..2*n-1: T(n,k) = T(n-1,k-1).

Original entry on oeis.org

0, 1, 0, 2, 3, 1, 0, 2, 4, 5, 3, 1, 0, 2, 4, 6, 7, 5, 3, 1, 0, 2, 4, 6, 8, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16
Offset: 0

Views

Author

Keywords

Comments

If all pairs of consecutive terms (i,i+1) (such as (0,1), (1,2), (2,3), ...) are erased, the original sequence appears; see also A253607.
T(n,n-k) + T(n,n+k) = 4*k - 1 for k = 1..n;
T(n+m,k) = T(n,k) for m > 0, k = 0 .. 2*n.

Examples

			.   0:                                 0
.   1:                               1 0 2
.   2:                             3 1 0 2 4
.   3:                           5 3 1 0 2 4 6
.   4:                         7 5 3 1 0 2 4 6 8
.   5:                       9 7 5 3 1 0 2 4 6 8 10
.   6:                    11 9 7 5 3 1 0 2 4 6 8 10 12
.   7:                 13 11 9 7 5 3 1 0 2 4 6 8 10 12 14
.   8:              15 13 11 9 7 5 3 1 0 2 4 6 8 10 12 14 16
.   9:           17 15 13 11 9 7 5 3 1 0 2 4 6 8 10 12 14 16 18
.  10:        19 17 15 13 11 9 7 5 3 1 0 2 4 6 8 10 12 14 16 18 20
.  11:     21 19 17 15 13 11 9 7 5 3 1 0 2 4 6 8 10 12 14 16 18 20 22
.  12:  23 21 19 17 15 13 11 9 7 5 3 1 0 2 4 6 8 10 12 14 16 18 20 22 24 .
		

References

  • V. A. Sankar Ponnapalli and V. Y. Jayasree Pappu, Design of Octagonal Fractal Array Antenna for Side Lobe Reduction with Morse-Thue Fractal Density Tapering Technique, Preprint, 2016.

Crossrefs

Cf. A014105 (row sums), A253607 (first differences as flattened list), A253146.

Programs

  • Haskell
    a253580 n k = a253580_tabf !! n !! k
    a253580_row n = a253580_tabf !! n
    a253580_tabf = [0] : [1,0,2] : f [1,0,2] where
       f xs@(x:_) = ys : f ys where ys = [x + 2] ++ xs ++ [x + 3]
    a253580_list = concat a253580_tabf
    
  • Mathematica
    a[n_, k_] := 2 Abs[n-k] - Boole[kJean-François Alcover, Nov 04 2016, after M. F. Hasler *)
  • PARI
    a(n,k)=abs(n-k)*2-(kM. F. Hasler, Jan 04 2015

Extensions

Typo in definition corrected by M. F. Hasler, Jan 04 2015