A253580 A fractal tree, read by rows: for n > 1: T(n,0) = T(n-1,0)+2, T(n,2*n) = T(n-1,0)+3, and for k=1..2*n-1: T(n,k) = T(n-1,k-1).
0, 1, 0, 2, 3, 1, 0, 2, 4, 5, 3, 1, 0, 2, 4, 6, 7, 5, 3, 1, 0, 2, 4, 6, 8, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 15, 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14, 16
Offset: 0
Examples
. 0: 0 . 1: 1 0 2 . 2: 3 1 0 2 4 . 3: 5 3 1 0 2 4 6 . 4: 7 5 3 1 0 2 4 6 8 . 5: 9 7 5 3 1 0 2 4 6 8 10 . 6: 11 9 7 5 3 1 0 2 4 6 8 10 12 . 7: 13 11 9 7 5 3 1 0 2 4 6 8 10 12 14 . 8: 15 13 11 9 7 5 3 1 0 2 4 6 8 10 12 14 16 . 9: 17 15 13 11 9 7 5 3 1 0 2 4 6 8 10 12 14 16 18 . 10: 19 17 15 13 11 9 7 5 3 1 0 2 4 6 8 10 12 14 16 18 20 . 11: 21 19 17 15 13 11 9 7 5 3 1 0 2 4 6 8 10 12 14 16 18 20 22 . 12: 23 21 19 17 15 13 11 9 7 5 3 1 0 2 4 6 8 10 12 14 16 18 20 22 24 .
References
- V. A. Sankar Ponnapalli and V. Y. Jayasree Pappu, Design of Octagonal Fractal Array Antenna for Side Lobe Reduction with Morse-Thue Fractal Density Tapering Technique, Preprint, 2016.
Links
- Reinhard Zumkeller, Rows n = 0..100 of triangle, flattened
- Éric Angelini, More fractal trees - and erasures, SeqFan list, Jan 04 2015.
Programs
-
Haskell
a253580 n k = a253580_tabf !! n !! k a253580_row n = a253580_tabf !! n a253580_tabf = [0] : [1,0,2] : f [1,0,2] where f xs@(x:_) = ys : f ys where ys = [x + 2] ++ xs ++ [x + 3] a253580_list = concat a253580_tabf
-
Mathematica
a[n_, k_] := 2 Abs[n-k] - Boole[k
Jean-François Alcover, Nov 04 2016, after M. F. Hasler *) -
PARI
a(n,k)=abs(n-k)*2-(k
M. F. Hasler, Jan 04 2015
Extensions
Typo in definition corrected by M. F. Hasler, Jan 04 2015
Comments