A253586 The sum of the i-th ternary digits of n, k, and A(n,k) equals 0 (mod 3) for each i>=0 (leading zeros included); square array A(n,k), n>=0, k>=0, read by antidiagonals.
0, 2, 2, 1, 1, 1, 6, 0, 0, 6, 8, 8, 2, 8, 8, 7, 7, 7, 7, 7, 7, 3, 6, 6, 3, 6, 6, 3, 5, 5, 8, 5, 5, 8, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 18, 3, 3, 0, 3, 3, 0, 3, 3, 18, 20, 20, 5, 2, 2, 5, 2, 2, 5, 20, 20, 19, 19, 19, 1, 1, 1, 1, 1, 1, 19, 19, 19, 24, 18, 18, 24, 0, 0, 6, 0, 0, 24, 18, 18, 24
Offset: 0
Examples
Square array A(n,k) begins: 0, 2, 1, 6, 8, 7, 3, 5, 4, ... 2, 1, 0, 8, 7, 6, 5, 4, 3, ... 1, 0, 2, 7, 6, 8, 4, 3, 5, ... 6, 8, 7, 3, 5, 4, 0, 2, 1, ... 8, 7, 6, 5, 4, 3, 2, 1, 0, ... 7, 6, 8, 4, 3, 5, 1, 0, 2, ... 3, 5, 4, 0, 2, 1, 6, 8, 7, ... 5, 4, 3, 2, 1, 0, 8, 7, 6, ... 4, 3, 5, 1, 0, 2, 7, 6, 8, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..200, flattened
- Rémy Sigrist, Colored representation of the table for 0 <= n, k < 3^7 (where the hue is function of T(n, k))
- Wikipedia, Set (game)
Crossrefs
Programs
-
Maple
A:= proc(n, k) local i, j; `if`(n=0 and k=0, 0, A(iquo(n, 3, 'i'), iquo(k, 3, 'j'))*3 +irem(6-i-j, 3)) end: seq(seq(A(n, d-n), n=0..d), d=0..14);
Formula
A(n,k) = A(floor(n/3),floor(k/3))*3+(6-(n mod 3)-(k mod 3) mod 3), A(0,0) = 0.