cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253597 Least Lucas-Carmichael number divisible by the n-th prime.

Original entry on oeis.org

399, 935, 399, 935, 2015, 935, 399, 4991, 51359, 2015, 1584599, 20705, 5719, 18095, 2915, 46079, 162687, 22847, 46079, 16719263, 12719, 7055, 80189, 104663, 20705, 482143, 196559, 60059, 90287, 162687, 3441239, 13971671
Offset: 2

Views

Author

Tim Johannes Ohrtmann, Jan 05 2015

Keywords

Comments

Has any odd prime number at least one Lucas-Carmichael multiple?

Examples

			a(2) = 399 because this is the least Lucas-Carmichael number which is divisible by 3 (the second prime number).
		

Crossrefs

Programs

  • Mathematica
    LucasCarmichaelQ[n_] := Block[{fi = FactorInteger@ n}, !PrimeQ@ n && Times @@ (Last@# & /@ fi) == 1 && Plus @@ Mod[n + 1, 1 + First@# & /@ fi] == 0]; f[n_] := Block[{k = p = Prime@ n}, While[ !LucasCarmichaelQ@ k, k += p]; k]; Array[f, 35, 2] (* Robert G. Wilson v, Feb 11 2015 *)
  • PARI
    is_A006972(n)=my(f=factor(n)); for(i=1, #f[, 1], if((n+1)%(f[i, 1]+1) || f[i, 2]>1, return(0))); #f[, 1]>1
    a(n) = pn = prime(n); ln = 1; until (is_A006972(ln) && (ln % pn == 0), ln++); ln;
    
  • PARI
    is_A006972(n)=my(f=factor(n)); for(i=1, #f~, if((n+1)%(f[i, 1]+1) || f[i, 2]>1, return(0))); #f~>1
    a(n)=my(p=prime(n), c=p^2+p, t=p); while(!is_A006972(t+=c),); t \\ Charles R Greathouse IV, Feb 03 2015

Formula

a(n) >> n^2 log^2 n. - Charles R Greathouse IV, Feb 03 2015