cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A253600 Smallest exponent k>1 such that n and n^k have some digits in common.

Original entry on oeis.org

2, 2, 5, 5, 3, 2, 2, 5, 5, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 4, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 2, 5, 3, 2, 2, 3, 3, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 5, 2, 3, 2, 2, 2, 2, 3, 2, 2
Offset: 0

Views

Author

Michel Marcus, Jan 05 2015

Keywords

Comments

For all n, n^5-n is divisible by 10, and so n^5 == n (mod 10). Thus a(n) <= 5 for all n. - Tom Edgar, Jan 06 2015

Examples

			For n=2, 2^k has no digit in common with 2 until k reaches 5 to give 32, hence a(2)=5.
		

Crossrefs

Cf. sequences where a(n)=k: A103173 (k=5), A189056 (k=2), A253601 (k=3), A253602 (k=4).
Cf. A373203.

Programs

  • Maple
    f:= proc(n) local L,k;
     L:= convert(convert(n,base,10),set);
     for k from 2 do
       if convert(convert(n^k,base,10),set) intersect L <> {} then
         return k
       fi
     od
    end proc:
    map(f, [$0..100]); # Robert Israel, Mar 17 2020
  • Mathematica
    seq={};Do[k=1;Until[ContainsAny[IntegerDigits[n],IntegerDigits[n^k]],k++];AppendTo[seq,k] ,{n,0,86}];seq (* James C. McMahon, Jun 04 2024 *)
  • PARI
    a(n) = {sd = Set(vecsort(digits(n))); k=2; while (#setintersect(sd, Set(vecsort(digits(n^k)))) == 0, k++); k;}

A253601 Numbers such that the smallest exponent for n and n^k to have common digits is 3.

Original entry on oeis.org

4, 9, 17, 18, 24, 29, 33, 34, 38, 39, 44, 54, 57, 58, 59, 62, 67, 72, 79, 84, 88, 94, 144, 158, 173, 194, 209, 212, 224, 237, 238, 244, 247, 253, 257, 259, 307, 313, 314, 333, 334, 338, 349, 353, 359, 377, 388, 404, 409, 424, 437, 444, 447, 449, 454, 459, 467
Offset: 1

Views

Author

Michel Marcus, Jan 05 2015

Keywords

Examples

			4^2=16 has no digits in common with 4, but 4^3=64 has some, so 4 is in the sequence.
		

Crossrefs

Programs

  • PARI
    a253600(n) = {sd = Set(vecsort(digits(n))); k=2; while (#setintersect(sd, Set(vecsort(digits(n^k)))) == 0, k++); k;}
    isok(n) = a253600(n) == 3;
    
  • PARI
    is(n) = my(d(k)=Set(digits(n^k))); !#setintersect(d(1), d(2)) && #setintersect(d(1), d(3)) \\ Iain Fox, Aug 07 2018
Showing 1-2 of 2 results.