cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253628 Psi(n) mod n, where Psi is the Dedekind psi function (A001615).

Original entry on oeis.org

0, 1, 1, 2, 1, 0, 1, 4, 3, 8, 1, 0, 1, 10, 9, 8, 1, 0, 1, 16, 11, 14, 1, 0, 5, 16, 9, 20, 1, 12, 1, 16, 15, 20, 13, 0, 1, 22, 17, 32, 1, 12, 1, 28, 27, 26, 1, 0, 7, 40, 21, 32, 1, 0, 17, 40, 23, 32, 1, 24, 1, 34, 33, 32, 19, 12, 1, 40, 27, 4, 1, 0, 1, 40, 45
Offset: 1

Views

Author

Tom Edgar, Jan 06 2015

Keywords

Comments

a(n) = A054024(n) when n is squarefree.
Indices of 1 appear to be given by primes A000040 (see conjecture in A068494). The (weaker) statement that a(prime(i)) = 1 is a direct consequence of the multiplicity of A001615.
a(n) = 0 if n is a member of A187778.

Examples

			A001615(12) = 24 and 24 == 0 (mod 12) so a(12) = 0.
A001615(15) = 24 and 24 == 9 (mod 15) so a(15) = 9.
		

Crossrefs

Programs

  • Maple
    A253628 := proc(n)
        modp(A001615(n),n) ;
    end proc: # R. J. Mathar, Jan 09 2015
  • Mathematica
    a253628[n_] :=
    Mod[DirichletConvolve[j, MoebiusMu[j]^2, j, #], #] & /@ Range@n; a253628[75] (* Michael De Vlieger, Jan 07 2015, after Jan Mangaldan at A001615 *)
  • Sage
    [(n*mul(1+1/p for p in prime_divisors(n)))%n for n in [1..100]]

Formula

a(n) = A001615(n) mod n.