cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253650 Triangular numbers that are the product of a triangular number and a square number (both greater than 1).

Original entry on oeis.org

300, 1176, 3240, 7260, 14196, 25200, 29403, 41616, 64980, 97020, 139656, 195000, 228150, 265356, 353220, 461280, 592416, 749700, 936396, 1043290, 1155960, 1412040, 1708476, 2049300, 2438736, 2881200, 3381300, 3499335, 3943836, 4573800, 5276376, 6056940, 6921060, 7874496
Offset: 1

Views

Author

Antonio Roldán, Jan 07 2015

Keywords

Examples

			3240 is in the sequence because 3240 is triangular number (3240=80*81/2), and 3240=10*324=(4*5/2)*(18^2), product of triangular number 10 and square number 324.
		

Crossrefs

Programs

  • Mathematica
    triQ[n_] := IntegerQ@ Sqrt[8n + 1]; lst = Sort@ Flatten@ Outer[Times, Table[ n(n + 1)/2, {n, 2, 400}], Table[ n^2, {n, 2, 200}]]; Select[ lst, triQ] (* Robert G. Wilson v, Jan 13 2015 *)
  • PARI
    {i=3; j=3; while(i<=10^7, k=3; p=3; c=0; while(k1, c=k); if(c>0, print1(i, ", ")); k+=p; p+=1); i+=j; j+=1)}
    
  • PARI
    is(n)=if(!ispolygonal(n,3), return(0)); fordiv(core(n,1)[2], d, d>1 && ispolygonal(n/d^2,3) && n>d^2 && return(1)); 0 \\ Charles R Greathouse IV, Sep 29 2015
    
  • PARI
    list(lim)=my(v=List(),t,c); for(n=24,(sqrt(8*lim+1)-1)\2, t=n*(n+1)/2; c=core(n,1)[2]*core(n+1,1)[2]; if(valuation(t,2)\2 < valuation(c,2), c/=2); fordiv(c, d, if(d>1 && ispolygonal(t/d^2,3) && t>d^2, listput(v,t); break))); Vec(v) \\ Charles R Greathouse IV, Sep 29 2015