cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253655 Number of monic irreducible polynomials of degree 6 over GF(prime(n)).

Original entry on oeis.org

9, 116, 2580, 19544, 295020, 804076, 4022064, 7839780, 24670536, 99133020, 147912160, 427612404, 791672280, 1053546956, 1796518224, 3694034916, 7030054140, 8586690620, 15076346164, 21349986840, 25222305336, 40514492720, 54489965796, 82830096360, 138828513824, 176919851700
Offset: 1

Views

Author

Robert Israel, Jan 07 2015

Keywords

Examples

			For n=1 the a(1) = 9 irreducible monic polynomials of degree 6 over GF(2) are
x^6+x^5+1, x^6+x^3+1, x^6+x^5+x^4+x^2+1, x^6+x^5+x^3+x^2+1, x^6+x+1, x^6+x^5+x^4+x+1, x^6+x^4+x^3+x+1, x^6+x^5+x^2+x+1, x^6+x^4+x^2+x+1.
		

Crossrefs

Programs

  • Magma
    [(p^6 - p^3 - p^2 + p) div 6: p in PrimesUpTo(110)]; // Vincenzo Librandi, Jan 08 2015
  • Maple
    f:= p-> (p^6 - p^3 - p^2 + p)/6:
    seq(f(ithprime(i)), i=1..100); # Robert Israel, Jan 07 2015
  • Mathematica
    Table[(Prime[n]^6 - Prime[n]^3 - Prime[n]^2 + Prime[n]) / 6, {n, 1, 30}] (* Vincenzo Librandi, Jan 08 2015 *)

Formula

a(n) = (p^6 - p^3 - p^2 + p)/6, where p = prime(n).