cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253666 Triangle read by rows, T(n,k) = C(n,k)*n!/(floor(n/2)!)^2, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 6, 18, 18, 6, 6, 24, 36, 24, 6, 30, 150, 300, 300, 150, 30, 20, 120, 300, 400, 300, 120, 20, 140, 980, 2940, 4900, 4900, 2940, 980, 140, 70, 560, 1960, 3920, 4900, 3920, 1960, 560, 70, 630, 5670, 22680, 52920, 79380, 79380, 52920, 22680, 5670, 630
Offset: 0

Views

Author

Peter Luschny, Feb 01 2015

Keywords

Examples

			Triangle begins:
.   1;
.   1,    1;
.   2,    4,     2;
.   6,   18,    18,     6;
.   6,   24,    36,    24,     6;
.  30,  150,   300,   300,   150,    30;
.  20,  120,   300,   400,   300,   120,    20;
. 140,  980,  2940,  4900,  4900,  2940,   980,   140;
.  70,  560,  1960,  3920,  4900,  3920,  1960,   560,   70;
. 630, 5670, 22680, 52920, 79380, 79380, 52920, 22680, 5670, 630; etc.
		

Crossrefs

Row sums are A253665.

Programs

  • Magma
    [Binomial(n,k)*Factorial(n)/Factorial(Floor(n/2))^2: k in [0..n], n in [0..10]]; // Bruno Berselli, Feb 02 2015
  • Maple
    T := (n,k) -> n!*binomial(n,k)/(iquo(n,2)!)^2:
    seq(print(seq(T(n,k), k=0..n)), n=0..9);

Formula

T(n,k) = C(n,k)*A056040(k).
T(2*n,n) = C(2*n,n)^2.