A253674 Indices of centered octagonal numbers (A016754) which are also centered triangular numbers (A005448).
1, 10, 40, 931, 3871, 91180, 379270, 8934661, 37164541, 875505550, 3641745700, 85790609191, 356853914011, 8406604195120, 34968041827330, 823761420512521, 3426511245164281, 80720212606031890, 335763133984272160, 7909757073970612651, 32901360619213507351
Offset: 1
Examples
10 is in the sequence because the 10th centered octagonal number is 361, which is also the 16th centered triangular number.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,98,-98,-1,1).
Programs
-
Mathematica
LinearRecurrence[{1,98,-98,-1,1},{1,10,40,931,3871},30] (* Harvey P. Dale, Oct 01 2015 *)
-
PARI
Vec(-x*(x^2-5*x+1)*(x^2+14*x+1)/((x-1)*(x^2-10*x+1)*(x^2+10*x+1)) + O(x^100))
Formula
a(n) = a(n-1)+98*a(n-2)-98*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^2-5*x+1)*(x^2+14*x+1) / ((x-1)*(x^2-10*x+1)*(x^2+10*x+1)).
Comments