cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253688 The total number of pentagons in a variant of pentagon expansion (vertex-to-vertex, two consecutive vertices and one isolated vertex) after n iterations.

Original entry on oeis.org

1, 4, 10, 21, 39, 64, 94, 129, 171, 218, 272, 331, 397, 468, 546, 629, 719, 814, 916, 1023, 1137, 1256, 1382, 1513, 1651, 1794, 1944, 2099, 2261, 2428, 2602, 2781, 2967, 3158, 3356, 3559, 3769, 3984, 4206, 4433, 4667, 4906, 5152, 5403, 5661, 5924, 6194, 6469, 6751, 7038
Offset: 1

Views

Author

Kival Ngaokrajang, Jan 09 2015

Keywords

Comments

Two star shaped icosagons appearing at n >= 6. See illustration.

Crossrefs

Cf. A253687 (side-to-side).

Programs

  • PARI
    {
    a=1;d1=0;p=a;print1(a,", ");\\5v3b
    for(n=2,100,
       if(n<3,d1=2,
         if(n<4,d1=3,
           if(n<5,d1=5,
             if(n<6,d1=7,
               if(n<7,d1=7,
                 if(n<8,d1=5,
                   if(Mod(n,2)==0,d1=5,d1=7
                   )
                 )
               )
             )
           )
         )
       );
       a=a+d1;p=p+a;
       print1(p,", ")
    )
    }

Formula

Conjectures from Colin Barker, Jan 09 2015: (Start)
a(n) = (53-(-1)^n-38*n+12*n^2)/4 for n>5.
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n>9.
G.f.: -x*(2*x^8-2*x^7-2*x^6+2*x^5+4*x^4+3*x^3+2*x^2+2*x+1) / ((x-1)^3*(x+1)).
(End)