cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A255870 a(n) is the total number of pentagrams in a pentagram fractal after n iterations.

Original entry on oeis.org

1, 6, 26, 76, 191, 411, 816, 1521, 2726, 4741, 8081, 13566, 22536, 37146, 60896, 99436, 161921, 263151, 427086, 692481, 1122056, 1817281, 2942351, 4762926, 7708866, 12475686, 20188766, 32668996, 52862651, 85536891, 138405156, 223948041, 362359586, 586314421
Offset: 0

Views

Author

Kival Ngaokrajang, Mar 08 2015

Keywords

Comments

Inspired by the "calice" (see detail in the CNRS link).
The pentagrams appearing in the calice are scaled down by a factor of 1/phi = 0.61803398... from the pentagrams whose vertex-to-vertex length = d. See illustration of the nested pentagrams in the links.

Crossrefs

Programs

  • Excel
    See links.
    
  • Magma
    I:=[1,6,26,76,191,411,816]; [n le 7 select I[n] else 3*Self(n-1)-Self(n-2)-4*Self(n-3)+3*Self(n-4)+Self(n-5)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Mar 18 2015
  • Mathematica
    CoefficientList[Series[(5 x^6 + x^5 - 10 x^4 - 8 x^3 - 9 x^2 - 3 x - 1)/((1-x)^3 (x+1) (x^2+x-1)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 18 2015 *)
  • PARI
    Vec(-(5*x^6+x^5-10*x^4-8*x^3-9*x^2-3*x-1)/((x-1)^3*(x+1)*(x^2+x-1)) + O(x^100)) \\ Colin Barker, Mar 12 2015
    

Formula

a(n) = 3*a(n-1)-a(n-2)-4*a(n-3)+3*a(n-4)+a(n-5)-a(n-6) for n>6. - Colin Barker, Mar 12 2015
G.f.: -(5*x^6+x^5-10*x^4-8*x^3-9*x^2-3*x-1) / ((x-1)^3*(x+1)*(x^2+x-1)). - Colin Barker, Mar 12 2015
a(n) = (-307 + 5*(-1)^n - 3*2^(2-n)*s*((11-5*s)*(1-s)^n - (1+s)^n*(11+5*s)) - 150*(1+n) - 50*(1+n)*(2+n)) / 8 for n>0 where s=sqrt(5). - Colin Barker, Mar 12 2017
E.g.f.: 3*exp(x/2)*(25*cosh(sqrt(5)*x/2) + 11*sqrt(5)*sinh(sqrt(5)*x/2)) - (12 + 5*x)*(23 + 5*x)*cosh(x)/4 - (281 + 25*x*(7 + x))*sinh(x)/4 - 5. - Stefano Spezia, Dec 07 2022

A253687 The total number of pentagons in a variant of pentagon expansion (side-to-side, two consecutive sides and one isolated side) after n iterations.

Original entry on oeis.org

1, 4, 10, 21, 39, 64, 94, 129, 167, 212, 262, 317, 375, 440, 510, 585, 663, 748, 838, 933, 1031, 1136, 1246, 1361, 1479, 1604, 1734, 1869, 2007, 2152, 2302, 2457, 2615, 2780, 2950, 3125, 3303, 3488, 3678, 3873, 4071, 4276, 4486, 4701, 4919, 5144, 5374, 5609, 5847, 6092
Offset: 1

Views

Author

Kival Ngaokrajang, Jan 09 2015

Keywords

Comments

Two decagons appearing at n >= 6. See illustration.

Crossrefs

Cf. A253688 (vertex-to-vertex).

Programs

  • PARI
    {
    a=1;d1=0;p=a;print1(a,", ");\\5s3b
    for(n=2,100,
       if(n<3,d1=2,
         if(n<4,d1=3,
           if(n<5,d1=5,
             if(n<6,d1=7,
               if(Mod(n,4)==0,d1=5,
                 if(Mod(n,4)==1,d1=3,
                   if(Mod(n,4)==2,d1=7,d1=5
                   )
                 )
               )
             )
           )
         )
       );
       a=a+d1;p=p+a;
       print1(p,", ")
    )
    }

Formula

Conjecture: a(n) = 2*a(n-1)-a(n-2)+a(n-4)-2*a(n-5)+a(n-6) for n>7. - Colin Barker, Jan 09 2015
Empirical g.f.: x*(4*x^8-2*x^6-5*x^5-6*x^4-5*x^3-3*x^2-2*x-1) / ((x-1)^3*(x+1)*(x^2+1)). - Colin Barker, Jan 09 2015

A253895 Total number of octagons in two variants of an octagon expansion after n iterations: either "side-to-side" or "vertex-to-vertex", respectively.

Original entry on oeis.org

1, 3, 7, 14, 25, 41, 63, 90, 120, 154, 192, 233, 278, 328, 382, 439, 500, 566, 636, 709, 786, 868, 954, 1043, 1136, 1234, 1336, 1441, 1550, 1664, 1782, 1903, 2028, 2158, 2292, 2429, 2570, 2716, 2866, 3019, 3176, 3338, 3504, 3673, 3846, 4024, 4206, 4391, 4580, 4774, 4972
Offset: 1

Views

Author

Kival Ngaokrajang, Jan 17 2015

Keywords

Comments

Inspired by A061777 and A179178 which are "vertex-to-vertex" and "side-to-side" versions of equilateral triangle expansion respectively.
In these octagon expansions there is allowed an expansion obeying "two sides separated by one side" or one obeying "two vertices separated by one vertex" for "side-to-side" or "vertex-to-vertex" versions respectively.
Two star shaped hexadecagons (16-gons) and a 4-star appear for n = 8 in the "side-to-side" version, and in the "vertex-to-vertex" version there appear two irregular star shaped icositetragons (24-gons). There are also rare type of polygons appearing for n > 8. See illustrations.

Crossrefs

Cf. A253896, A061777 (Triangle expansion, vertex-to-vertex, 3 vertices), A179178 (Triangle expansion, side-to-side, 2 sides), A253687 (Pentagon expansion, side-to-side, 2 consecutive sides and 1 isolated side), A253688 (Pentagon expansion, vertex-to-vertex, 2 consecutive vertices and 1 isolated vertex), A253547 (Hexagon expansion, vertex-to-vertex, 2 vertices separated by 1 vertex).

Programs

  • PARI
    {
    a=1;d1=0;p=a;print1(a,", ");\\8s2a, total oct.
    for(n=2,100,
       if(n<=7,d1=n-1,
         if(n<9,d1=5,
           if(n<10,d1=3,
             if(n<11,d1=4,
               if(Mod(n,4)==0,d1=3,
                 if(Mod(n,4)==1,d1=4,
                   if(Mod(n,4)==2,d1=5,d1=4
                   )
                 )
               )
             )
           )
         )
       );
       a=a+d1;p=p+a;
       print1(p,", ")
    )
    }

Formula

Conjectures from Colin Barker, Jan 17 2015: (Start)
a(n) = (-4-i*(-i)^n+i*i^n-18*n+8*n^2)/4 for n>8, where i=sqrt(-1).
G.f.: -x*(x^12-2*x^10-x^8+2*x^6+2*x^5+2*x^4+x^3+2*x^2+1) / ((x-1)^3*(x^2+1)).
(End)

A253896 Total number of either concave decagons or concave hexadecagons in two variants of an octagon expansion after n iterations: either "side-to-side" or "vertex-to-vertex", respectively.

Original entry on oeis.org

0, 0, 0, 1, 3, 7, 13, 22, 34, 48, 62, 81, 99, 121, 143, 170, 196, 226, 256, 291, 325, 363, 401, 444, 486, 532, 578, 629, 679, 733, 787, 846, 904, 966, 1028, 1095, 1161, 1231, 1301, 1376, 1450, 1528, 1606, 1689, 1771, 1857, 1943, 2034, 2124, 2218, 2312, 2411, 2509, 2611
Offset: 1

Views

Author

Kival Ngaokrajang, Jan 17 2015

Keywords

Comments

Inspired by A061777 and A179178 which are "vertex-to-vertex" and "side-to-side" versions of equilateral triangle expansion, respectively.
In these octagon expansions, there is allowed only an expansion obeying "two sides separated by one side" or one by obeying "two vertices separated by one vertex" for the "side-to-side" or "vertex-to-vertex" versions, respectively.
Two star-shaped hexadecagons (16-gons) and a 4-star appear when n = 8 for the "side-to-side" version, and in the "vertex-to-vertex" version there appears an irregular star-shaped icositetragons (24-gons). Rare type of polygons also appear for n > 8. See illustrations.

Crossrefs

Cf. A253895, A061777 (Triangle expansion, vertex-to-vertex, 3 vertices), A179178 (Triangle expansion, side-to-side, 2 sides), A253687 (Pentagon expansion, side-to-side, 2 consecutive sides and 1 isolated side), A253688 (Pentagon expansion, vertex-to-vertex, 2 consecutive vertices and 1 isolated vertex), A253547 (Hexagon expansion, vertex-to-vertex, 2 vertices separated by 1 vertex).

Programs

  • PARI
    {
    a=0;d1=0;p=1;print1("0, 0, 0, ",p,", ");\\8s2a1
    for(n=2,100,
       if(n<5,d1=2,
         if(n<7,d1=3,
           if(n<8,d1=2,
             if(Mod(n,4)==0,d1=0,
               if(Mod(n,4)==1,d1=5,
                 if(Mod(n,4)==2,d1=-1,d1=4
                 )
               )
             )
           )
         )
       );
       a=a+d1;p=p+a;
       print1(p,", ")
    )
    }

Formula

Empirical g.f.: -x^4*(2*x^10 -4*x^9 +2*x^8 -2*x^7 +2*x^5 +2*x^4 +2*x^3 +2*x^2 +x +1) / ((x -1)^3*(x +1)*(x^2 +1)). - Colin Barker, Jan 17 2015

A254835 Total number of nonagons in a variant of a nonagon expansion ("side-to-side", two consecutive sides) after n iterations.

Original entry on oeis.org

2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 133, 136, 144, 153, 161, 170, 180, 187, 197, 206, 216, 225, 233, 242, 248, 259, 269, 278, 286, 295, 305, 314, 322, 331, 341, 350, 358, 367, 377, 386, 394, 403, 413, 422, 430, 439, 449, 458, 466, 475, 485, 494, 502
Offset: 1

Views

Author

Kival Ngaokrajang, Feb 08 2015

Keywords

Comments

Two irregular star-shaped 18-gons appear for n = 17.
There are also rare types of polygons appearing for n >= 16. See illustrations.

Crossrefs

Cf. A061777 (Triangle expansion, vertex-to-vertex, 3 vertices), A179178 (Triangle expansion, side-to-side, 2 sides), A253687 (Pentagon expansion, side-to-side, 2 consecutive sides and 1 isolated side), A253688 (Pentagon expansion, vertex-to-vertex, 2 consecutive vertices and 1 isolated vertex), A253547 (Hexagon expansion, vertex-to-vertex, 2 vertices separated by 1 vertex), A253895 and A253896 (Octagon expansion).

Programs

  • PARI
    {a=259;print1("2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 133, 136, 144, 153, 161, 170, 180, 187, 197, 206, 216, 225, 233, 242, 248, ",a,", "); for(n=32,100,if(Mod(n,4)==0,d=10,if(Mod(n,4)==1,d=9,if(Mod(n,4)==2, d=8, d=9)));a=a+d;print1(a,", "))}

Formula

Conjectures from Colin Barker, Feb 08 2015: (Start)
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-a(n-4) for n>21.
G.f.: -x*(2*x^33 -4*x^32 +4*x^31 -6*x^30 +4*x^29 +2*x^26 -4*x^25 +4*x^24 -4*x^23 +2*x^22 -2*x^20 -4*x^19 +8*x^18 -2*x^17 +8*x^16 +2*x^15 -2*x^14 -2*x^13 -2*x^12 -2*x^11 -2*x^10 -2*x^9 -2*x^8 -2*x^7 -2*x^6 -2*x^5 -2*x^4 -x^3 -3*x^2 -2) / ((x -1)^2*(x^2 +1)).
(End)
Showing 1-5 of 5 results.