cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A253714 Indices of hexagonal numbers (A000384) which are also centered heptagonal numbers (A069099).

Original entry on oeis.org

1, 2857, 45529, 184300369, 2937241777, 11889953986681, 189493215939721, 767068491312421537, 12224965330197902689, 49486656636639609035209, 788681413122894278122297, 3192582165489099245985035761, 50880992673985436128583949841
Offset: 1

Views

Author

Colin Barker, Jan 10 2015

Keywords

Comments

Also positive integers x in the solutions to 4*x^2-7*y^2-2*x+7*y-2 = 0, the corresponding values of y being A253715.

Examples

			2857 is in the sequence because the 2857th hexagonal number is 16322041, which is also the 2160th centered heptagonal number.
		

Crossrefs

Programs

  • PARI
    Vec(-x*(x^4+2856*x^3-21842*x^2+2856*x+1)/((x-1)*(x^2-254*x+1)*(x^2+254*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+64514*a(n-2)-64514*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+2856*x^3-21842*x^2+2856*x+1) / ((x-1)*(x^2-254*x+1)*(x^2+254*x+1)).

A253716 Hexagonal numbers (A000384) which are also centered heptagonal numbers (A069099).

Original entry on oeis.org

1, 16322041, 4145734153, 67933251842771953, 17254778510170993681, 282742011610770921096804841, 71815357774355276244995175961, 1176788140728629029198108610250463201, 298899554649081431834808455098428958753, 4897858370145334123819452782766901335994312153
Offset: 1

Views

Author

Colin Barker, Jan 10 2015

Keywords

Examples

			16322041 is in the sequence because it is the 2857th hexagonal number and the 2160th centered heptagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,4162056194,0,-1},{1,16322041,4145734153,67933251842771953},20] (* Harvey P. Dale, Jan 05 2017 *)
  • PARI
    Vec(-x*(x-1)*(x^2+16322042*x+1)/((x^2-64514*x+1)*(x^2+64514*x+1)) + O(x^100))

Formula

a(n) = 4162056194*a(n-2)-a(n-4).
G.f.: -x*(x-1)*(x^2+16322042*x+1) / ((x^2-64514*x+1)*(x^2+64514*x+1)).
Showing 1-2 of 2 results.