A253775 Numbers representable as x^y + x + y, where x>1, y>1 are integers (without multiplicity).
8, 13, 14, 22, 32, 33, 39, 44, 58, 71, 72, 74, 88, 92, 112, 133, 134, 137, 158, 184, 212, 225, 242, 251, 264, 266, 274, 308, 344, 353, 382, 422, 464, 508, 523, 554, 602, 634, 652, 704, 738, 741, 758, 814, 872, 932, 994, 1013, 1033, 1036, 1058, 1124, 1192, 1262, 1306
Offset: 1
Keywords
Examples
a(1) = 8 = 2^2 + 2 + 2. a(2) = 13 = 2^3 + 2 + 3. a(3) = 14 = 3^2 + 3 + 2. a(4) = 22 = 2^4 + 2 + 4 = 4^2 + 4 + 2. - _Wolfdieter Lang_, Feb 03 2015
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..1000
Programs
-
Maple
N:= 10000; # to get all terms <= N select(`<=`,{seq(seq(x^y+x+y, y = 2..floor(log[x](N-x))), x=2..floor(sqrt(N)))},N); # if using Maple 11 or earlier, uncomment the next line # sort(convert(%, list)); # Robert Israel, Jan 14 2015
-
Mathematica
M = 2000; Select[Table[x^y + x + y, {x, 2, Floor[Sqrt[M]]}, {y, 2, Floor[Log[x, M-x]] }] // Flatten, # <= M&] // Union (* Jean-François Alcover, Feb 27 2019, after Robert Israel *)