cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A253776 Primes representable as x^y + x + y, where x>1, y>1 are integers.

Original entry on oeis.org

13, 71, 137, 251, 353, 523, 1013, 1033, 2213, 4933, 24421, 32803, 39341, 59063, 78137, 117701, 125053, 140663, 148933, 205441, 274693, 279949, 343073, 371311, 456613, 493121, 524309, 571873, 681563, 912773, 1225153, 1594339, 1953253, 2406241, 2924353, 3241943, 3652421
Offset: 1

Views

Author

Alex Ratushnyak, Jan 12 2015

Keywords

Crossrefs

Programs

  • Maple
    N:= 10^6; # to get all terms <= N
    A:= select(t -> t <= N and isprime(t), {seq(seq(x^y+x+y, y = 2..floor(log[x](N-x))), x=2..floor(sqrt(N)))}, N):
    sort(convert(A,list)); # Robert Israel, Sep 18 2024
  • PARI
    list(lim)=my(v=List()); forstep(y=3,oo,2, if(2^y+y+2>lim, break); for(x=2,oo, my(p=x^y+x+y); if(p>lim, break); if(isprime(p), listput(v,p)))); Set(v) \\ Charles R Greathouse IV, Sep 18 2024

A253917 Numbers that can be represented as both x^y + x and b^c + b + c, for some b, c, x, y > 1.

Original entry on oeis.org

72, 738, 2758, 16777232, 1073741856, 282429536508, 95367431640650, 150094635296999148, 221073919720733357899812, 311973482284542371301330321821976098, 1329227995784915872903807060280344640, 85070591730234615865843651857942052992
Offset: 1

Views

Author

Alex Ratushnyak, Jan 18 2015

Keywords

Comments

Intersection of A253913 and A253775.

Examples

			72 = 2^6+2+6 = 8^2+8,
738 = 3^6+3+6 = 9^3+9,
2758 = 52^2+52+2 = 14^3+14,
16777232 = 4^12+4+12 = 8^8+8,
1073741856 = 2^30+2+30 = 32^6+32,
282429536508 = 3^24+3+24 = 27^8+27,
95367431640650 = 5^20+5+20 = 25^10+25,
150094635296999148 = 9^18+9+18 = 27^12+27,
221073919720733357899812 = 6^30+6+30 = 30^15+36,
311973482284542371301330321821976098 = 7^42+7+42 = 49^21+49,
1329227995784915872903807060280344640 = 4^60+4+60 = 64^20+64,
85070591730234615865843651857942052992 = 2^126+2+126 = 128^18+128,
etc. - _Robert G. Wilson v_, Jan 19 2015
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{t = Transpose@ Flatten[ Table[{m^k + m, m^k + m + k}, {m, 2, Floor@ Sqrt[2^n]}, {k, Floor@ Log[m, 2^(n - 1)] + 1, Floor@ Log[m, 2^n]}], 1]}, Intersection[ t[[1]], t[[2]]]]; f[1] = {}; Array[f, 50] // Flatten (* Robert G. Wilson v, Jan 19 2015 *)

Extensions

a(7)-a(12) from Robert G. Wilson v, Jan 19 2015

A253777 Numbers representable as x^y + x + y in two or more ways, where x>1, y>1 are integers.

Original entry on oeis.org

22, 523, 531456, 16777232, 281474976710684, 150094635296999160
Offset: 1

Views

Author

Alex Ratushnyak, Jan 12 2015

Keywords

Comments

The sequence is infinite since it contains all the numbers (k^2)^(k^2-k)+k^2+k^2-k = k^(2k^2-2k)+k+2k^2-2k for k>1. - Giovanni Resta, May 19 2015
Let a, b, and k be integers such that m = ab(k^a-k^b)/(a-b) is an integer. Then, the number given by (x,y) = (k^a,m/a) is the same as that given by (k^b,m/b). The given terms correspond to (a,b,k) = (2,1,2), (3,1,2), (2,1,3), (3,2,2), (4,2,2)/(2,1,4), and (3,1,3). - Charlie Neder, Apr 19 2019

Examples

			a(1) = 22 = 2^4 + 2 + 4 = 4^2 + 4 + 2.
a(2) = 523 = 8^3 + 8 + 3 = 2^9 + 2 + 9.
a(3) = 531456 = 3^12 + 3 + 12 = 9^6 + 9 + 6.
a(4) = 16777232 = 4^12 + 4 + 12 = 8^8 + 8 + 8.
a(5) = 281474976710684 = 4^24 + 4 + 24 = 16^12 + 16 + 12.
a(6) = 150094635296999160 = 3^36 + 3 + 36 = 27^12 + 27 + 12.
		

Crossrefs

Extensions

a(6) from Lars Blomberg, May 19 2015

A253916 Numbers that can be represented as both x^y + y and b^c + b + c, for some b, c, x, y > 1.

Original entry on oeis.org

264, 1334, 4108, 373323, 6436371, 387420507, 1099511627816
Offset: 1

Views

Author

Alex Ratushnyak, Jan 18 2015

Keywords

Comments

Intersection of A099225 and A253775.

Examples

			264 is in the list since 264 = 2^8 + 8 and 264 = 4^4 + 4 + 4.
a(2) = 1334 = 11^3 + 3 = 36^2 + 36 + 2.
		

Crossrefs

A250004 Numbers representable as x^y + x*y, where x>1, y>1 are integers (without multiplicity).

Original entry on oeis.org

8, 14, 15, 24, 35, 36, 42, 48, 63, 76, 80, 93, 99, 120, 140, 142, 143, 168, 195, 224, 234, 255, 258, 272, 288, 323, 360, 364, 399, 440, 483, 528, 530, 536, 575, 624, 645, 675, 728, 747, 756, 783, 840, 899, 960, 1023, 1030, 1044, 1088, 1155, 1224, 1295, 1320, 1364, 1368
Offset: 1

Views

Author

Alex Ratushnyak, Jan 14 2015

Keywords

Comments

The sequence of numbers representable as x^y + x*y in two or more ways begins: 24, 76, 272, 1044, 2208, 4120, 16412. Example: 2208 = 46^2 + 46*2 = 3^7 + 3*7.
The subsequence of squares begins: 36, 1764.

Examples

			a(2) = 14 = 2^3 + 2*3.
a(3) = 15 = 3^2 + 3*2.
a(22) = 255 = 15^2 + 15*2.
		

Crossrefs

Cf. A253775.
Cf. A024036 is a subsequence, except first 2 terms.

Programs

  • PARI
    isok(n) = {for (p=2, floor(log(n)/log(2)), for (k=2, sqrtnint(n, p), if (n == k^p + p*k, return (1)););); return (0);} \\ Michel Marcus, Jan 16 2015

A255804 Numbers representable as x*y*(x+y), b*c+b+c, and d^e+d+e, where d>1, e>1, b>=c>1 and x>=y>1.

Original entry on oeis.org

264, 308, 8192, 16400, 88508, 236684, 504812, 12127808, 22491308, 82310258, 227240552, 385278014, 1069061114, 2363758544, 2591166314, 2985365684, 3310448834, 4042988642, 4791339182, 5712714308, 7553782658, 8626601522, 12494656622, 14498688512, 15165306758, 15445891244
Offset: 1

Views

Author

Alex Ratushnyak, Mar 07 2015

Keywords

Comments

Intersection of A253775, A254671, A255265.

Examples

			a(2) = 308 = 17^2 + 17 + 2 = 7 * 4 * (7 + 4) = 102 * 2 + 102 + 2.
		

Crossrefs

Programs

  • PARI
    \\ See Corneth link
  • Python
    TOP = 100000000
    a = [0]*TOP
    c = []
    for y in range(2, TOP//2):
      if 2**y + 2 + y >= TOP: break
      for x in range(2, TOP//2):
        k = x**y+(x+y)
        if k>=TOP: break
        c.append(k)
    for y in range(2, TOP//2):
      if 2*y*y*y >= TOP: break
      for x in range(y, TOP//2):
        k = x*y*(x+y)
        if k>=TOP: break
        a[k]=1
    for y in range(2, TOP//2):
      if y*(y+2) >= TOP: break
      for x in range(y, TOP//2):
        k = x*y+(x+y)
        if k>=TOP: break
        a[k]|=2
        # if a[k]==3 and (k in c): print(k, end=', ')
    print([n for n in range(TOP) if a[n]==3 and (n in c)])
    

Extensions

More terms from David A. Corneth, Oct 18 2024

A253287 Numbers representable as x^y + x*y and as b^c + b + c, where x, y, b, c are integers > 1.

Original entry on oeis.org

8, 14, 3135, 10714, 70342709283
Offset: 1

Views

Author

Alex Ratushnyak, Jan 18 2015

Keywords

Comments

Intersection of A250004 and A253775.
No more terms < 10^20. - Lars Blomberg, Dec 13 2015

Examples

			a(2) = 14 = 2^3 + 2*3 = 3^2 + 2 + 3.
a(3) = 3135 = 55^2 + 55*2 = 5^5 + 5 + 5.
a(4) = 10714 = 22^3 + 22*3 = 103^2 + 103 + 2.
a(5) = 70342709283 = 265221^2 + 265221*2 = 4128^3 + 4128 + 3.
		

Crossrefs

Showing 1-7 of 7 results.