cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A253775 Numbers representable as x^y + x + y, where x>1, y>1 are integers (without multiplicity).

Original entry on oeis.org

8, 13, 14, 22, 32, 33, 39, 44, 58, 71, 72, 74, 88, 92, 112, 133, 134, 137, 158, 184, 212, 225, 242, 251, 264, 266, 274, 308, 344, 353, 382, 422, 464, 508, 523, 554, 602, 634, 652, 704, 738, 741, 758, 814, 872, 932, 994, 1013, 1033, 1036, 1058, 1124, 1192, 1262, 1306
Offset: 1

Views

Author

Alex Ratushnyak, Jan 12 2015

Keywords

Examples

			a(1) = 8 = 2^2 + 2 + 2.
a(2) = 13 = 2^3 + 2 + 3.
a(3) = 14 = 3^2 + 3 + 2.
a(4) = 22 = 2^4 + 2 + 4 = 4^2 + 4 + 2. - _Wolfdieter Lang_, Feb 03 2015
		

Crossrefs

Programs

  • Maple
    N:= 10000; # to get all terms <= N
    select(`<=`,{seq(seq(x^y+x+y, y = 2..floor(log[x](N-x))),
          x=2..floor(sqrt(N)))},N);
    # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(%, list)); # Robert Israel, Jan 14 2015
  • Mathematica
    M = 2000;
    Select[Table[x^y + x + y, {x, 2, Floor[Sqrt[M]]}, {y, 2, Floor[Log[x, M-x]] }] // Flatten, # <= M&] // Union (* Jean-François Alcover, Feb 27 2019, after Robert Israel *)

A253777 Numbers representable as x^y + x + y in two or more ways, where x>1, y>1 are integers.

Original entry on oeis.org

22, 523, 531456, 16777232, 281474976710684, 150094635296999160
Offset: 1

Views

Author

Alex Ratushnyak, Jan 12 2015

Keywords

Comments

The sequence is infinite since it contains all the numbers (k^2)^(k^2-k)+k^2+k^2-k = k^(2k^2-2k)+k+2k^2-2k for k>1. - Giovanni Resta, May 19 2015
Let a, b, and k be integers such that m = ab(k^a-k^b)/(a-b) is an integer. Then, the number given by (x,y) = (k^a,m/a) is the same as that given by (k^b,m/b). The given terms correspond to (a,b,k) = (2,1,2), (3,1,2), (2,1,3), (3,2,2), (4,2,2)/(2,1,4), and (3,1,3). - Charlie Neder, Apr 19 2019

Examples

			a(1) = 22 = 2^4 + 2 + 4 = 4^2 + 4 + 2.
a(2) = 523 = 8^3 + 8 + 3 = 2^9 + 2 + 9.
a(3) = 531456 = 3^12 + 3 + 12 = 9^6 + 9 + 6.
a(4) = 16777232 = 4^12 + 4 + 12 = 8^8 + 8 + 8.
a(5) = 281474976710684 = 4^24 + 4 + 24 = 16^12 + 16 + 12.
a(6) = 150094635296999160 = 3^36 + 3 + 36 = 27^12 + 27 + 12.
		

Crossrefs

Extensions

a(6) from Lars Blomberg, May 19 2015

A249444 Primes representable as p^q + p + q, where p and q are primes.

Original entry on oeis.org

13, 137, 251, 353, 2213, 4933, 24421, 78137, 148933, 205441, 371311, 493121, 524309, 571873, 912773, 1225153, 1594339, 4330913, 7189253, 13652161, 18191713, 21254213, 28629187, 31855333, 42508901, 49431233, 73560481, 81183173, 99253313, 178454113, 184220581, 192100613
Offset: 1

Views

Author

Alex Ratushnyak, Jan 12 2015

Keywords

Crossrefs

Showing 1-3 of 3 results.