cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A309525 a(n) is the greatest divisor of A006190(n) that is coprime to A006190(m) for all positive integers m < n.

Original entry on oeis.org

1, 3, 10, 11, 109, 1, 1189, 119, 1297, 131, 141481, 59, 1543321, 1429, 3089, 14159, 183642229, 433, 2003229469, 14041, 1837837, 170039, 238367471761, 7079, 23854956949, 1854841, 2186871697, 1670761, 309400794703549, 12871, 3375045015828949, 200477279
Offset: 1

Views

Author

Jianing Song, Aug 06 2019

Keywords

Comments

Analog of A178763 and A308949.

Examples

			A006190(12) = 467280 = 2^4 * 3^2 * 5 * 11 * 59. We have 2, 3, 5 divides A006190(6) = 360 and 11 divides A006190(3) = 11, but A006190(m) is coprime to 59 for all 1 <= m < 12, so a(12) = 59.
		

Crossrefs

Programs

  • Maple
    A6190:= proc(n) option remember; 3*procname(n-1)+procname(n-2) end proc:
    A6190(0):= 0: A6190(1):= 1:
    f:= proc(n) local k,i,g;
      k:= A6190(n);
      for i from 1 to n-1 do
        g:= igcd(k,A6190(i));
        while g > 1 do
          k:= k/g;
          g:= igcd(k,A6190(i));
        od;
      od;
      k
    end proc:
    map(f, [$1..40]); # Robert Israel, Aug 02 2024
  • PARI
    T(n) = ([3, 1; 1, 0]^n)[2, 1]
    b(n) = my(v=divisors(n)); prod(i=1, #v, T(v[i])^moebius(n/v[i]))
    a(n) = if(isprime(n)&&!(13%n), 1543321, if(n!=6, b(n)/gcd(n, b(n)), 1))

Formula

a(n) = A253807(n) / gcd(A253807(n), n) if n != 6, 13.

A309041 Irregular table read by rows: Let P(n,x) be the (monic) minimal polynomial of 2i*cos(Pi/n), where i = sqrt(-1) is the imaginary unit, then a(n,k) = [x^(2k)] P(n,x), n >= 3.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 3, 1, 1, 6, 5, 1, 2, 4, 1, 1, 9, 6, 1, 5, 5, 1, 1, 15, 35, 28, 9, 1, 1, 4, 1, 1, 21, 70, 84, 45, 11, 1, 7, 14, 7, 1, 1, 24, 26, 9, 1, 2, 16, 20, 8, 1, 1, 36, 210, 462, 495, 286, 91, 15, 1, 3, 9, 6, 1, 1, 45, 330, 924, 1287, 1001, 455, 120, 17, 1
Offset: 3

Views

Author

Jianing Song, Jul 08 2019

Keywords

Comments

For n >= 3, it is easy to see that [x^(2k+1)] P(n,x) = 0, so they are omitted.
Row n (n >= 3) has length A023022(n) + 1 = phi(n)/2 + 1.
Let {U(n,x)} be defined as: U(0,x) = 0, U(1,x) = 1, U(n,x) = x*U(n-1,x) + U(n-2,x) for n >= 2, then U(n,x) = Product_{k|n, k>=2} P(k,x) for n > 0, because U(n,x) = Product_{m=1..n-1} (x - 2i*cos(Pi*m/n)) for n > 0.

Examples

			P(1,x) = x^2 + 4;
P(2,x) = x;
P(3,x) = x^2 + 1;
P(4,x) = x^2 + 2;
P(5,x) = x^4 + 3x^2 + 1;
P(6,x) = x^2 + 3;
P(7,x) = x^6 + 5x^4 + 6x^2 + 1;
P(8,x) = x^4 + 4x^2 + 2;
P(9,x) = x^6 + 6x^4 + 9x^2 + 1;
P(10,x) = x^4 + 5x^2 + 5;
...
		

Crossrefs

Cf. A232624.
Cf. P(n,k): A061446 (k=1), A008555 (k=2), A253807 (k=3);
Cf. also A023022, A008683.

Programs

  • Mathematica
    ro[n_] := (P = CoefficientList[p = MinimalPolynomial[2*I*Cos[Pi/n], x], x^2]; P); Flatten[Table[ro[n], {n, 3, 30}]]
  • PARI
    U(n) = sum(i=0, (n-1)/2,binomial(n,2*i+1)*(poly/2)^(n-2*i-1)*((poly^2+4)/4)^i)
    P(n) = if(n==1, poly^2+4, my(v=divisors(n)); prod(i=1, #v, U(n/v[i])^moebius(v[i])))
    a(n,k) = polcoeff(P(n),2*k)

Formula

P(n,x) = Product_{0<=m<=n, gcd(m, n)=1} (x - 2i*cos(Pi*m/n)).
Equivalently, P(n,x) = Product_{0<=m<=n/2, gcd(m, n)=1} (x^2 + 4*cos(Pi*m/n)) for n != 2. This shows that all terms are positive.
P(n,x) = Product_{k|n} U(n/k,x)^mu(k), mu = A008683.
Let MPR2(n,x) be the (monic) minimal polynomial of 2*cos(2*Pi/n) as defined in A232624, then: for even n > 2, P(n,x) = MPR2(2n,i*x)*(-1)^A023022(n); for odd n, P(n,x) = MPR2(n,i*x)*MPR2(2n,i*x)*(-1)^A023022(n), i = sqrt(-1).
For n > 2, P(n,x) = MPR2(n,-x^2-2)*(-1)^A023022(n).
For n > 1, P(n,1) = A061446(n), P(n,2) = A008555(n), P(n,3) = A253807(n), ...
For even n > 2, a(n,k) = (-1)^(A023022(n)-k)*A232624(2n,2k).
Showing 1-2 of 2 results.