A253809 Array of pairs (x,y) of Markoff triples (x,y,z) with x <= y <= z, for z given in A002559.
1, 1, 1, 1, 1, 2, 1, 5, 2, 5, 1, 13, 1, 34, 2, 29, 5, 13, 1, 89, 5, 29, 1, 233, 2, 169, 13, 34, 1, 610, 5, 194, 1, 1597, 2, 985, 5, 433, 13, 194, 34, 89, 1, 4181, 29, 169, 1, 10946, 2, 5741, 29, 433, 5, 2897, 13, 1325, 89, 233, 1, 28657
Offset: 1
Examples
The array A(n,k) begins: If the Frobenius conjecture is true there will only be one pair x(1,n), y(1,n) for each z(n). n z(n) \ k=1: x(1,n) k=2: y(1,n) ... 1 1: 1 1 2 2: 1 1 3 5: 1 2 4 13: 1 5 5 29: 2 5 6 34: 1 13 7 89: 1 34 8 169: 2 29 9 194: 5 13 10 233: 1 89 11 433: 5 29 12 610: 1 233 13 985: 2 169 14 1325: 13 34 15 1597: 1 610 16 2897: 5 194 17 4181: 1 1597 18 5741: 2 985 19 6466: 5 433 20 7561: 13 194 21 9077: 34 89 22 10946: 1 4181 23 14701: 29 169 24 28657: 1 10946 25 33461: 2 5741 26 37666: 29 433 27 43261: 5 2897 28 51641: 13 1325 29 62210: 89 233 30 75025: 1 28657 ...
References
- R. A. Mollin, Advanced Number Theory with Applications, Chapman & Hall/CRC, Boca Raton, 2010, 123-125.
- See also A002559.
Links
- Feng-Juan Chen and Yong-Gao Chen, On the Frobenius conjecture for Markoff numbers, J. Number Theory 133 (2013) 2363-2373.
- Don Zagier, On the number of Markoff numbers below a given bound, Mathematics of Computation 39:160 (1982), pp. 709-723.
- See also A002559.
Crossrefs
Cf. A002559.
Comments