cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253825 Numbers m = concat(s,t) such that m = (sigma(s)-s) * (sigma(t)-t), where sigma(x)-x is the sum of the aliquot parts of x.

Original entry on oeis.org

6396, 20680, 124416, 567816, 1719480, 7593432, 10538040, 36382320, 107277800, 123251968, 166601760, 327844840, 933363000, 1286859804, 2524125184, 3398418000, 4561432920, 4566915540, 4911440776, 7097433536, 16913792670, 20565608940, 21099997800, 27639552000
Offset: 1

Views

Author

Paolo P. Lava, Jan 15 2015

Keywords

Examples

			6396 = concat(63,96) -> sigma(63)-63 = 41, sigma(96)-96 = 156 and 41*156 = 6396.
20680 = concat(20,680) -> sigma(20)-20 = 22, sigma(680)-680 = 940 and 22*940 = 20680.
124416 = concat(12,4416) -> sigma(12)-12 = 16, sigma(4416)-4416 = 7776 and 16*7776 = 124416.
567816 = concat(567,816) -> sigma(567)-567 = 410, sigma(816)-816 = 1416 and 401*1416 = 567816.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local s, t, k, n;
    for n from 1 to q do for k from 1 to ilog10(n) do s:=n mod 10^k; t:=trunc(n/10^k); if s*t>0 then if (sigma(s)-s)*(sigma(t)-t)=n
    then print(n); break; fi; fi; od; od; end: P(10^6);
  • Mathematica
    fQ[n_] := Block[{idn = IntegerDigits@ n, lng = Floor@ Log10@ n}, MemberQ[ Table[s = FromDigits@ Take[idn, {1, i}]; t = FromDigits@ Take[idn, {i + 1, lng + 1}]; (DivisorSigma[1, s] - s) (DivisorSigma[1, t] - t), {i, lng}], n]]; k = 1; lst = {}; While[k < 100000001, If[fQ@ k, AppendTo[lst, k]; Print@ k]; k++] (* Robert G. Wilson v, Jan 26 2015 *)
  • PARI
    isok(n) = {len = #Str(n); for (k=1, len-1, na = n\10^k; nb = n % 10^k; if (nb && (n == (sigma(na)-na)*(sigma(nb)-nb)), return (1)););} \\ Michel Marcus, Jan 15 2015

Extensions

a(8)-a(9) from Robert G. Wilson v, Jan 26 2015
a(10)-a(24) from Hiroaki Yamanouchi, Sep 26 2015