A253829 Triangular array with g.f. Product_{n >= 1} 1/(1 - x*z^n/(1 - z)).
1, 0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 7, 4, 1, 0, 5, 13, 11, 5, 1, 0, 6, 22, 25, 16, 6, 1, 0, 7, 34, 50, 41, 22, 7, 1, 0, 8, 50, 91, 92, 63, 29, 8, 1, 0, 9, 70, 155, 187, 155, 92, 37, 9, 1, 0, 10, 95, 250, 353, 343, 247, 129, 46, 10, 1, 0, 11, 125, 386, 628, 701, 590, 376, 175, 56, 11, 1
Offset: 0
Examples
Triangle begins n\k| 0 1 2 3 4 5 6 7 = = = = = = = = = = = = = = = = = 0 | 1 1 | 0 1 2 | 0 2 1 3 | 0 3 3 1 4 | 0 4 7 4 1 5 | 0 5 13 11 5 1 6 | 0 6 22 25 16 6 1 7 | 0 7 34 50 41 22 7 1 ... T(4,2) = 7: The compositions of 4 into two parts are 2 + 2, 1 + 3 and 3 + 1. Coloring the parts as described above produces seven colored compositions of 4 into two parts: 2(c1) + 2(c1), 2(c1) + 2(c2), 2(c2) + 2(c2), 1(c1) + 3(c1), 1(c1) + 3(c2), 1(c1) + 3(c3), 3(c1) + 1(c1).
Links
- P. Bala, Colored Compositions
Programs
-
Maple
G := 1/(product(1-x*z^j/(1-z), j = 1 .. 12)): Gser := simplify(series(G, z = 0, 14)): for n to 12 do P[n] := coeff(Gser, z^n) end do: for n to 12 do seq(coeff(P[n], x^j), j = 1 .. n) end do;
Formula
G.f.: G(x,z) := Product_{n >= 1} (1 - z)/(1 - z - x*z^n) = exp( Sum_{n >= 1} (x*z)^n/(n*(1 - z)^n*(1 - z^n)) ) =
1 + Sum_{n >= 1} (x*z/(1 - z))^n/( Product_{i = 1..n} 1 - z^i ) = 1 + x*z + (2*x + x^2)*z^2 + (3*x + 3*x^2 + x^3)*z^3 + ....
Note, G(x*(1 - z),z) is the generating function of A008284.
T(n,k) = Sum_{i = k..n} binomial(i-1,k-1)*A008284(n+k-i,k).
Recurrence equation: T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-k,k) - T(n-k-1,k) with boundary conditions T(n,n) = 1, T(n,0) = 0 for n >= 1 and T(n,k) = 0 for n < k.
Row sums are A227682.
Comments