cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A253913 Numbers of the form m^k + m, with m >= 0 and k > 1.

Original entry on oeis.org

0, 2, 6, 10, 12, 18, 20, 30, 34, 42, 56, 66, 68, 72, 84, 90, 110, 130, 132, 156, 182, 210, 222, 240, 246, 258, 260, 272, 306, 342, 350, 380, 420, 462, 506, 514, 520, 552, 600, 630, 650, 702, 732, 738, 756, 812, 870, 930, 992, 1010, 1026, 1028, 1056, 1122, 1190, 1260, 1302
Offset: 1

Views

Author

Alex Ratushnyak, Jan 18 2015

Keywords

Crossrefs

Programs

  • Maple
    N:= 10000: # for terms <= N
    S:= 0, 2:
    for k from 2 to floor(log[2](N)) do
      for m from 2 do
        v := m^k+m; if v > N then break fi;
        S:= S, v;
    od od:
    sort(convert({S}, list)): # Robert Israel, Apr 28 2019, changed Jul 8 2021
  • Mathematica
    max = 1000; Sort[Flatten[Table[m^k + m, {m, 2, Floor[Sqrt[max]]}, {k, 2, Floor[Log[m, max]]}]]] (* Alonso del Arte, Jan 18 2015 *)
  • Python
    def aupto(lim):
        xkx = set(x**k + x for k in range(2, lim.bit_length()) for x in range(int(lim**(1/k))+2))
        return sorted(filter(lambda t: t<=lim, xkx))
    print(aupto(1500)) # Michael S. Branicky, Jul 08 2021

Extensions

Changed to include 0 and 2 by Robert Israel, Jul 08 2021

A253917 Numbers that can be represented as both x^y + x and b^c + b + c, for some b, c, x, y > 1.

Original entry on oeis.org

72, 738, 2758, 16777232, 1073741856, 282429536508, 95367431640650, 150094635296999148, 221073919720733357899812, 311973482284542371301330321821976098, 1329227995784915872903807060280344640, 85070591730234615865843651857942052992
Offset: 1

Views

Author

Alex Ratushnyak, Jan 18 2015

Keywords

Comments

Intersection of A253913 and A253775.

Examples

			72 = 2^6+2+6 = 8^2+8,
738 = 3^6+3+6 = 9^3+9,
2758 = 52^2+52+2 = 14^3+14,
16777232 = 4^12+4+12 = 8^8+8,
1073741856 = 2^30+2+30 = 32^6+32,
282429536508 = 3^24+3+24 = 27^8+27,
95367431640650 = 5^20+5+20 = 25^10+25,
150094635296999148 = 9^18+9+18 = 27^12+27,
221073919720733357899812 = 6^30+6+30 = 30^15+36,
311973482284542371301330321821976098 = 7^42+7+42 = 49^21+49,
1329227995784915872903807060280344640 = 4^60+4+60 = 64^20+64,
85070591730234615865843651857942052992 = 2^126+2+126 = 128^18+128,
etc. - _Robert G. Wilson v_, Jan 19 2015
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{t = Transpose@ Flatten[ Table[{m^k + m, m^k + m + k}, {m, 2, Floor@ Sqrt[2^n]}, {k, Floor@ Log[m, 2^(n - 1)] + 1, Floor@ Log[m, 2^n]}], 1]}, Intersection[ t[[1]], t[[2]]]]; f[1] = {}; Array[f, 50] // Flatten (* Robert G. Wilson v, Jan 19 2015 *)

Extensions

a(7)-a(12) from Robert G. Wilson v, Jan 19 2015

A253916 Numbers that can be represented as both x^y + y and b^c + b + c, for some b, c, x, y > 1.

Original entry on oeis.org

264, 1334, 4108, 373323, 6436371, 387420507, 1099511627816
Offset: 1

Views

Author

Alex Ratushnyak, Jan 18 2015

Keywords

Comments

Intersection of A099225 and A253775.

Examples

			264 is in the list since 264 = 2^8 + 8 and 264 = 4^4 + 4 + 4.
a(2) = 1334 = 11^3 + 3 = 36^2 + 36 + 2.
		

Crossrefs

Showing 1-3 of 3 results.