A253913 Numbers of the form m^k + m, with m >= 0 and k > 1.
0, 2, 6, 10, 12, 18, 20, 30, 34, 42, 56, 66, 68, 72, 84, 90, 110, 130, 132, 156, 182, 210, 222, 240, 246, 258, 260, 272, 306, 342, 350, 380, 420, 462, 506, 514, 520, 552, 600, 630, 650, 702, 732, 738, 756, 812, 870, 930, 992, 1010, 1026, 1028, 1056, 1122, 1190, 1260, 1302
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10000: # for terms <= N S:= 0, 2: for k from 2 to floor(log[2](N)) do for m from 2 do v := m^k+m; if v > N then break fi; S:= S, v; od od: sort(convert({S}, list)): # Robert Israel, Apr 28 2019, changed Jul 8 2021
-
Mathematica
max = 1000; Sort[Flatten[Table[m^k + m, {m, 2, Floor[Sqrt[max]]}, {k, 2, Floor[Log[m, max]]}]]] (* Alonso del Arte, Jan 18 2015 *)
-
Python
def aupto(lim): xkx = set(x**k + x for k in range(2, lim.bit_length()) for x in range(int(lim**(1/k))+2)) return sorted(filter(lambda t: t<=lim, xkx)) print(aupto(1500)) # Michael S. Branicky, Jul 08 2021
Extensions
Changed to include 0 and 2 by Robert Israel, Jul 08 2021
Comments