cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253919 Indices of products of four distinct primes (A046386) in the sequence of products of 4 primes (A014613).

Original entry on oeis.org

27, 44, 56, 63, 71, 78, 83, 99, 103, 111, 115, 130, 133, 139, 140, 145, 166, 168, 171, 176, 185, 188, 190, 199, 201, 207, 208, 213, 217, 221, 229, 233, 239, 244, 248, 266, 271, 274, 276, 278, 285, 292, 299, 306, 313, 316, 317, 320, 322, 325, 331, 337, 341, 347, 351, 353, 357, 363, 375, 381, 387, 388, 389, 393, 394, 396, 402
Offset: 1

Views

Author

Zak Seidov, Jan 19 2015

Keywords

Comments

Or, positions of squarefree numbers in A014613.

Examples

			a(1) = 27 because A014613(27) = A046386(1) = 210 = 2*3*5*7 the first squarefree number in A014613.
a(10000) = 25632 because A014613(25632) = A046386(100000) = 135555 = 2*3*7*1291 10000st squarefree number in A014613.
		

Crossrefs

Programs

  • Mathematica
    c = 0; s = {}; Do[If[4 == PrimeOmega[k], c++; If[{1, 1, 1, 1} == (#[[2]] & /@ FactorInteger[k]) , AppendTo[s, c]]], {k, 16, 3000}]; s
    (* or *) c = 0; s2 = {}; Do[If[4 == PrimeOmega[k], c++; If[SquareFreeQ[k] , AppendTo[s2, c]]], {k, 16, 3000}]; s2
  • PARI
    {c = 0; for (k = 16, 3000, if (4 == bigomega (k), c++; if (issquarefree (k), print1 (c ", "))))}

Formula

A014613(a(n))=A046386(n).