A253937 Primes p such that 4+p^7, 4+p^9 and 4+p^11 are also prime.
82609, 1032607, 1859479, 2158447, 4952173, 5009593, 5828353, 6779833, 11316859, 11370727, 12786157, 13872853, 14117053, 15082783, 15645697, 15935989, 16715623, 20102569, 21310603, 22106569, 22164253, 23674597, 26012953, 26325613, 29592919, 30086347, 30306637
Offset: 1
Keywords
Examples
a(1) = 82609: 4 + 82609^7 = 26253762656881427836948640304009173; 4 + 82609^9 = 179162157925737357103123335151825463343651893; 4 + 82609^11 = 1222646797417942588836172615268162579679296234658008213; all four are prime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..720
Programs
-
Mathematica
Select[Prime[Range[1, 2000000]], PrimeQ[4 + #^7] && PrimeQ[4 + #^9] && PrimeQ[4 + #^11] &]
-
PARI
forprime(p=1, 1e7, if(isprime(4+p^7) && isprime(4+p^9) && isprime(4+p^11), print1(p,", ")))