A254006 a(0) = 1, a(n) = 3*a(n-2) if n mod 2 = 0, otherwise a(n) = 0.
1, 0, 3, 0, 9, 0, 27, 0, 81, 0, 243, 0, 729, 0, 2187, 0, 6561, 0, 19683, 0, 59049, 0, 177147, 0, 531441, 0, 1594323, 0, 4782969, 0, 14348907, 0, 43046721, 0, 129140163, 0, 387420489, 0, 1162261467, 0, 3486784401, 0, 10460353203, 0, 31381059609, 0, 94143178827
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Kival Ngaokrajang, Illustration of construction rule and initial terms
- Index entries for linear recurrences with constant coefficients, signature (0,3).
Programs
-
Mathematica
nxt[{n_,a_,b_}]:={n+1,b,If[OddQ[n],3a,0]}; Transpose[NestList[nxt,{1,1,0},50]][[2]] (* or *) With[{nn=25},Riffle[3^Range[0,nn],0]] (* Harvey P. Dale, Nov 30 2015 *)
-
PARI
{ a=1; print1(a,", "); for (n=1,100, if (Mod(n,2)==0, a=a*3; print1(a,", "), print1(0,", ") ) ) }
-
PARI
Vec(-1/(3*x^2-1) + O(x^100)) \\ Colin Barker, Jan 26 2015
-
PARI
a(n) = if(n%2==0,3^(n/2),0) \\ Jason Yuen, Mar 24 2025
Formula
a(n) = 3*a(n-2) if n mod 2 = 0, otherwise a(n) = 0, a(0) = 1.
a(n) = (3^(n/2)*(1+(-1)^n))/2. - Colin Barker, Jan 26 2015
G.f.: -1 / (3*x^2-1). - Colin Barker, Jan 26 2015
Comments