A254008 Numbers that divide the sum of the reverse of their divisors (A069192).
1, 6, 15, 37, 87, 397, 435, 639, 1086, 2574, 8997, 10986, 26994, 101918, 161406, 207321, 793170, 834657, 890827, 1976355, 3224625, 7591023, 8999997, 9970098, 11052598, 17930619, 18368601, 21739023, 38014197, 89999997, 109999986, 116141652, 177765554, 201264120
Offset: 1
Examples
Divisors of 8997 are 1, 3, 2999, 8997 and the sum of their reverse is 1 + 3 + 9992 + 7998 = 17994. Finally, 17994 / 8997 = 2.
Links
- Lars Blomberg, Table of n, a(n) for n = 1..41
Programs
-
Magma
[n: n in [1..10^6] | &+[Seqint(Reverse(Intseq(d))): d in Divisors(n)] mod n eq 0]; // Bruno Berselli, Jan 22 2015
-
Maple
with(numtheory): T:=proc(w) local x,y,z; x:=w; y:=0; for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end: P:=proc(q) local a,b,k; global n; for n from 1 to q do a:=sort([op(divisors(n))]); b:=add(T(a[k]),k=1..nops(a)); if type(b/n,integer) then print(n); fi; od; end: P(10^9);
Extensions
a(19)-a(33) from Lars Blomberg, Feb 27 2015