A254029 Positive solutions of Monkey and Coconuts Problem for the classic case (5 sailors, 1 coconut to the monkey): a(n) = 15625*n - 4 for n >= 1.
15621, 31246, 46871, 62496, 78121, 93746, 109371, 124996, 140621, 156246, 171871, 187496, 203121, 218746, 234371, 249996, 265621, 281246, 296871, 312496, 328121, 343746, 359371, 374996, 390621, 406246, 421871, 437496, 453121, 468746
Offset: 1
References
- Charles S. Ogilvy and John T. Anderson, Excursions in Number Theory, Oxford University Press, 1966, pages 52-54.
- Miodrag S. Petković, "The sailors, the coconuts, and the monkey", Famous Puzzles of Great Mathematicians, Amer. Math. Soc.(AMS), 2009, pages 52-56.
Links
- Luciano Ancora, Table of n, a(n) for n = 1..1000
- Umberto Cerruti, Marinai e noci di cocco, Divertiamoci con la Matematica (in Italian)
- Santo D'Agostino, "The Coconut Problem"; Updated With Solution, May 2011.
- Eric Weisstein's World of Mathematics, Monkey and Coconut Problem
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Mathematica
s = 5; c = 1; Table[n s^(s + 1) - c (s - 1), {n, 1, 30}] (* or *) CoefficientList[Series[(15621 + 4 x)/(-1 + x)^2, {x, 0, 29}], x]
Formula
G.f.: x*(15621 + 4*x)/(1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) = a(n-1) + 15625, with a(0) = -4 and a(-1) = -(4 + 5^6). a(n) = 5^6*n - 4.
a(n) = (15*c(n) + 11) + 265*(c(n) + 1)/2^10, with c(n) = A158421(n) = 2^10*n - 1, for n >= 1. - Richard S. Fischer and Wolfdieter Lang, Jun 01 2023
Comments