A254045 a(1) = 0, for n > 1: a(n) = a(A253889(n)) + floor((n modulo 3)/2).
0, 1, 0, 1, 2, 0, 1, 1, 1, 3, 2, 2, 2, 3, 1, 1, 1, 0, 0, 2, 3, 3, 2, 2, 2, 2, 1, 2, 4, 2, 1, 3, 4, 1, 3, 4, 3, 3, 3, 4, 4, 2, 2, 2, 3, 1, 2, 2, 3, 2, 4, 3, 1, 2, 2, 1, 2, 2, 3, 5, 3, 4, 1, 3, 4, 0, 3, 3, 5, 5, 3, 3, 4, 3, 4, 4, 3, 2, 3, 2, 1, 3, 3, 4, 2, 5, 3, 2, 3, 3, 3, 2, 2, 2, 4, 3, 1, 5, 5, 4, 2, 2, 1, 4, 1, 3, 5, 1, 5, 4, 3, 3, 4, 1, 3, 4, 3, 6, 5, 3, 1, 5, 3, 2, 3, 3, 5, 3
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..8192
Formula
a(1) = 0, for n > 1: a(n) = a(A253889(n)) + floor((n modulo 3)/2).
a(1) = 0, thereafter, if n = 3k+2, then a(3k+2) = 1 + a(k+1), otherwise a(n) = a(A253889(n)).
a(n) = A080791(A064216(n)). [Number of nonleading zeros in binary representation of terms of A064216.]
Other identities and observations:
a(A007051(n)) = n for all n >= 0.
a(n) >= A253786(n) for all n >= 1.